
Unified memory
GPGPU 2015: High Performance Computing with CUDA

University of Cape Town (South Africa), April, 20th-24th, 2015

Manuel Ujaldón
Associate Professor @ Univ. of Malaga (Spain)
Conjoint Senior Lecturer @ Univ. of Newcastle (Australia)
CUDA Fellow @ Nvidia

Talk outline [28 slides]

1. State of art of technology [12]
2. Programming with unified memory [4]
3. Examples [8]
4. Final remarks [4]

2

I. State of art of technology

A 2015 graphics card:
Kepler/Maxwell GPU with GDDR5 memory

4

A 2017 graphics card:
Pascal GPU with 3D memory (stacked DRAM)

5

The Pascal GPU prototype:
SXM2.0 Form Factor

6

140 mm.

78 mm.

(* Marketing Code Name. Name is not final).

SMX2.0*:
3x Performance Density

Details on silicon integration

DRAM cells are organized in vaults,
which take borrowed the interleaved
memory arrays from already existing
DRAM chips.

A logic controller is placed at the base
of the DRAM layers, with data matrices
on top.

The assembly is connected with
through-silicon vias, TSVs, which
traverse vertically the stack using pitches
between 4 and 50 um. with a vertical
latency of 12 picosecs. for a Stacked
DRAM endowed with 20 layers. 7

20 ns. 40 ns. 60 ns. 80 ns. 100 ns. 120 ns. 140 ns. 160 ns. 180 ns. 200 ns.0ns.

100 MHz

READ

Row Col.

ACTIVE

Address bus

Control bus

Data bus RCD=2 CL=2

RCD=4 CL=4 DDR2-400, CL=4, quad-channel t = 50ns. Latency weight: 80%

RCD=4 CL=4 DDR2-400, CL=4,
dual-channel

200 MHz

Time to fill a typical cache line (128 bytes)

8

RCD=2 CL=2 DDR-200, CL=2, dual-channel architecture

Dato Dato Dato Dato

Dato Dato Dato Dato

RCD=2 CL=2

Dato Dato Dato Dato Dato Dato Dato Dato

DDR-200, CL=2

t = 45 ns. Latency weight: 89%RCD=8 CL=8 DDR3-800, CL=8, quad-channel

t = 200 ns.
latency
weight: 20%t = 120 ns.

latency weight: 33%

t = 80 ns.
latency
weight: 50%

t = 60 ns.
latency
weight: 66%

The most popular memory in 2015 is
DDR3-1600, with RCD=11 and CL=11.
These two latencies represent 27.5 ns.
out of 30 ns., 91.6% of the total time.

Dato Dato Dato Dato Dato Dato Dato Dato Dato Dato Dato Dato Dato Dato Dato Dato
SDRAM-100,
CL=2 (1998)

(burst length: 16 words of 8 bytes to complete a cache lines 128 bytes long)

Tclk = 10 ns.

We have been waiting more than
15 years for this chance, and now
with TSVs in 3D it is real.

9

3D integration,
side by side with the processor

3D technology
for processor(s)

SRAM0
SRAM1
SRAM2
SRAM3
SRAM4
SRAM5
SRAM6
SRAM7

CPU+GPU

Links to processor(s),
which can be another 3D
chip, but more
heterogeneous:
- Base: CPU y GPU.
- Layers: Cache (SRAM).

Step 5: Buses connecting 3D memory chips
and the processor are incorporated.

Step 3: Pile-up
DRAM layers.

Step 2: Gather the
common logic underneath.

Lo
gi

c
ba

se
Va

ul
t c

on
tr

ol
Va

ul
t c

on
tr

ol
Va

ul
t c

on
tr

ol
Va

ul
t c

on
tr

ol

M
em

or
y

co
nt

ro
l

C
os

sb
ar

 s
w

itc
h

Li
nk

in

te
rf

ac
e

Li
nk

in

te
rf

ac
e

Li
nk

in

te
rf

ac
e

Li
nk

in

te
rf

ac
e

Step 1: Partition into 16 cell
matrices (future vaults)

Step 4: Build vaults with TSVs

3D technology
for DRAM memory

DRAM0
DRAM1
DRAM2
DRAM3
DRAM4
DRAM5
DRAM6
DRAM7

Control
logic

A typical multi-core die
uses >50% for SRAM.
And those transistors
switch slower on lower
voltage, so the cache
will rely on interleaving
over piled-up matrices,
just the way DRAM does.

Typical DRAM
chips use 74%
of the silicon
area for the
cell matrices.

Using 3D chips to build a Haswell-like CPU

We have CPU, GPU and SRAM in different proportions
within silicon die, depending on 8 available models:

10And, in addition, we want to include some DRAM layers.

Given the higher role played by latency, the last row is the
winner: DRAM is the greatest beneficiary of 3D integration.

Core 2
Core 1Cache

4 MB.
Core 1

Core 2
Cache
4 MB.

Core 1
Core 2

DRAM
32 MB.

Cache
4 MB.

Core 1
Core 2

Cache
8 MB.

DRAM
64 MB.

Alternative 1 Alternative 2 Alternative 3 Alternative 4

Axiom: DRAM is 8 times more dense than a SRAM.
Hypothesis: A core uses similar die area than 2 MB L3

(Ivy Bridge @ 22nm. fulfills this today if we left L2 aside).
Evaluation: 2 layers, with the following alternatives (all

reached similar temperatures):

Intel already authored a research
showing the best choices (*)

11(*) B. Black et al. "Die Stacking (3D) Microarchitecture", published in MICRO'06.

Layer #1 Layer #2 Area Latency Bandwidth Power cons.

2 cores + 4 MB L3 Empty

2 cores + 4 MB L3 8 MB L3

2 cores 32 MB. DRAM

2 cores + 4 MB L3 64 MB. DRAM

1+0 = 1 High High 92 W.

1+1 = 2 Medium Medium 106 W.

1/2+1/2=1 Low Low 88 W.

1+1 = 2 Very low Very low 98 W.

Today

12

GPU CPU

DDR4 MemoryGDDR5 Memory

PCIe
16 GB/s

DDR4
50-75 GB/s

GDDR5
250-350 GB/s

In two years

13

GPU CPU

DDR42.5D memory

NVLINK
80 GB/s

DDR4
100 GB/s

Memory stacked
in 4 layers: 1 TB/s

In four years:
All communications internal to the 3D chip

14

GPU
CPU

Boundary
of the
silicon
die

SRAM

3D-DRAM

The idea: Accustom the programmer
to see the memory that way

15

GPUCPU

DDR3 GDDR5

Main memory Video memory

PCI-express

Maxwell
 GPUCPU

DDR3 GDDR5Unified
memory

The old hardware
and software model:
Different memories,
performances
and address spaces.

The new API:
Same memory,
a single global
address space.

Performance sensitive
to data proximity.

CUDA 2007-2014 CUDA 2015 on

II. Programming with unified memory

Unified memory contributions

Simpler programming and memory model:
Single pointer to data, accessible anywhere.
Eliminate need for cudaMemcpy().
Greatly simplifies code porting.

Performance through data locality:
Migrate data to accessing processor.
Guarantee global coherency.
Still allows cudaMemcpyAsync() hand tuning.

17

CUDA memory types

18

Zero-Copy
(pinned memory)

Unified Virtual
Addressing Unified Memory

CUDA call

Allocation fixed in

Local access for

PCI-e access for

Other features

Coherency

Full support in

cudaMallocHost(&A, 4); cudaMalloc(&A, 4); cudaMallocManaged(&A, 4);

Main memory (DDR3) Video memory (GDDR5) Both

CPU Home GPU CPU and home GPU

All GPUs Other GPUs Other GPUs

Avoid swapping to disk No CPU access On access CPU/GPU migration

At all times Between GPUs Only at launch & sync.

CUDA 2.2 CUDA 1.0 CUDA 6.0

Additions to the CUDA API

New call: cudaMallocManaged(pointer,size,flag)
Drop-in replacement for cudaMalloc(pointer,size).
The flag indicates who shares the pointer with the device:
cudaMemAttachHost: Only the CPU.
cudaMemAttachGlobal: Any other GPU too.

All operations valid on device mem. are also ok on managed mem.

New keyword: __managed__
Global variable annotation combines with __device__.
Declares global-scope migratable device variable.
Symbol accessible from both GPU and CPU code.

New call: cudaStreamAttachMemAsync()
Manages concurrently in multi-threaded CPU applications.

19

Unified memory: Technical details

The maximum amount of unified memory that can be
allocated is the smallest of the memories available on GPUs.

Memory pages from unified allocations touched by CPU are
required to migrate back to GPU before any kernel launch.

The CPU cannot access any unified memory as long as GPU
is executing, that is, a cudaDeviceSynchronize() call is
required for the CPU to be allowed to access unified memory.

The GPU has exclusive access to unified memory when
any kernel is executed on the GPU, and this holds even if the
kernel does not touch the unified memory (see an example
on next slide).

20

III. Examples

First example:
Access constraints

22

__device__ __managed__ int x, y = 2; // Unified memory

__global__ void mykernel() // GPU territory
{
 x = 10;
}

int main() // CPU territory
{
 mykernel <<<1,1>>> ();

 y = 20; // ERROR: CPU access concurrent with GPU
 return 0;
}

First example:
Access constraints

23

__device__ __managed__ int x, y = 2; // Unified memory

__global__ void mykernel() // GPU territory
{
 x = 10;
}

int main() // CPU territory
{
 mykernel <<<1,1>>> ();
 cudaDeviceSynchronize(); // Problem fixed!
 // Now the GPU is idle, so access to “y” is OK
 y = 20;
 return 0;
}

Second example:
Sorting elements from a file

24

CPU code in C GPU code from CUDA 6.0 on

void sortfile (FILE *fp, int N)
{
 char *data;
 data = (char *) malloc(N);

 fread(data, 1, N, fp);

 qsort(data, N, 1, compare);

 use_data(data);

 free(data);
}

void sortfile (FILE *fp, int N)
{
 char *data;
 cudaMallocManaged(&data, N);

 fread(data, 1, N, fp);

 qsort<<<...>>>(data, N, 1, compare);
 cudaDeviceSynchronize();
 use_data(data);

 cudaFree(data);
}

Third example: Cloning dynamic data
structures WITHOUT unified memory

A “deep copy” is required:
We must copy the structure

and everything that it points to.
This is why C++ invented the
copy constructor.

CPU and GPU cannot share a
copy of the data (coherency).
This prevents memcpy style
comparisons, checksumming
and other validations.

25

dataElem

prop1

prop2

*text “Hello, world”

CPU memory

dataElem

prop1

prop2

*text “Hello, world”

GPU memory

struct dataElem {
 int prop1;

 int prop2;
 char *text;
}

Two addresses
and two copies
of the data

Cloning dynamic data structures
WITHOUT unified memory

26

dataElem

prop1

prop2

*text “Hello, world”

CPU memory

dataElem

prop1

prop2

*text “Hello, world”

GPU memory

void launch(dataElem *elem) {
 dataElem *g_elem;
 char *g_text;

 int textlen = strlen(elem->text);

 // Allocate storage for struct and text
 cudaMalloc(&g_elem, sizeof(dataElem));

 cudaMalloc(&g_text, textlen);

 // Copy up each piece separately, including
new “text” pointer value
 cudaMemcpy(g_elem, elem, sizeof(dataElem));

 cudaMemcpy(g_text, elem->text, textlen);
 cudaMemcpy(&(g_elem->text), &g_text,

 sizeof(g_text));

 // Finally we can launch our kernel, but

 // CPU and GPU use different copies of “elem”
 kernel<<< ... >>>(g_elem);

}

Two addresses
and two copies
of the data

Cloning dynamic data structures
WITH unified memory

What remains the same:
Data movement.
GPU accesses a local copy of text.

What has changed:
Programmer sees a single pointer.
CPU and GPU both reference the

same object.
There is coherence.

To pass-by-reference vs. pass-
by-value you need to use C++.

27

void launch(dataElem *elem) {
 kernel<<< ... >>>(elem);
}

dataElem

prop1

prop2

*text “Hello, world”

GPU memory

Unified memory

CPU memory

Fourth example: Linked lists

Almost impossible to manage in the original CUDA API.
The best you can do is use pinned memory:

Pointers are global: Just as unified memory pointers.
Performance is low: GPU suffers from PCI-e bandwidth.
GPU latency is very high, which is critical for linked lists because of

the intrinsic pointer chasing. 28

key

value

next

key

value

next

key

value

next

key

value

next

key

value

next

key

value

next

All accesses via PCI-express bus

CPU memory

GPU memory

Linked lists with unified memory

Can pass list elements between CPU & GPU.
No need to move data back and forth between CPU and GPU.

Can insert and delete elements from CPU or GPU.
But program must still ensure no race conditions (data is coherent

between CPU & GPU at kernel launch only). 29

key

value

next

key

value

next

key

value

next

CPU memory

GPU memory

IV. Final remarks

Unified memory: Summary

Drop-in replacement for cudaMalloc() using
cudaMallocManaged().

cudaMemcpy() now optional.

Greatly simplifies code porting.
Less Host-side memory management.

Enables shared data structures between CPU & GPU
Single pointer to data = no change to data structures.

Powerful for high-level languages like C++.

31

Unified memory: The roadmap.
Contributions on every abstraction level

32

Abstraction
level

Past:
Consolidated

 in 2014

Present:
On the way
during 2015

Future:
Available

in coming years

High

Medium

Low

Single pointer to data.
No cudaMemcpy()

is required

Prefetching mechanisms
to anticipate data arrival

in copies
System allocator unified

Coherence @
launch & synchronize Migration hints Stack memory unified

Shared C/C++ data
structures

Additional
OS support

Hardware-accelerated
coherence

NV-Link: High-speed GPU interconnect

33

NVLink

NVLink

POWER CPU

POWER CPUX86 ARM64
POWER CPU

2016/17: Pascal2014/15: Kepler

PCIe PCIe

Final summary

Kepler is aimed to irregular computing, enabling the GPU
to enter new application domains. Win: Functionality.

Maxwell simplifies the GPU model to reduce energy and
programming effort. Win: Low-power, memory-friendly.

Pascal introduces 3D-DRAM and NV-Link. Win: Transfers,
heterogeneity.

3D memory changes memory hierarchy and boosts performance.
NV-Link helps to communicate GPUs/CPUs in a transition phase

towards SoC (System-on-Chip), where all major components integrate
on a single chip: CPU, GPU, SRAM, DRAM and controllers.

34

