
Squeezing GPU performance
GPGPU 2015: High Performance Computing with CUDA

University of Cape Town (South Africa), April, 20th-24th, 2015

Manuel Ujaldón
Associate Professor @ Univ. of Malaga (Spain)
Conjoint Senior Lecturer @ Univ. of Newcastle (Australia)
CUDA Fellow @ Nvidia

GPU peak performance vs. CPU

GPU 6x faster on “double”:
 GPU: 3000 GFLOPS
 CPU: 500 GFLOPS

19

Peak Double Precision FLOPS Peak Memory Bandwidth

GPU 6x more bandwidth:
 7 GHz x 48 bytes = 336 GB/s.
 2 GHz x 32 bytes = 64 GB/s.

Let’s make a Malaga - Madrid travel (500 km)

Effective time using the train:
Preliminaries: 3 minutes.
Travel: 2 hours, 30 minutes.
Closing: 2 minutes.
TOTAL: 2 hours, 35 minutes.

Effective time using the plane:
Preliminaries: 90 minutes.
Travel: 50 minutes.
Closing: 30 minutes.
TOTAL: 2 hours, 50 minutes (and

you are away from downtown!)

20

200 km/h

1000 km/h

The real speed of my car

Maximum:
250 km/h.

Average on a 10
years use:

50 km/h.

So I regularly use
my car at 20% of
peak performance.
Should I be
disappointed?

21

Instructions for the game available on the
web site: http://cms.ac.uma.es/kepler

22

The simplest possible parallel program:
Loops are parallelizable.
Workload is known at compile-time.

Forall loop execution versus
data-dependent parallelism

23

for (i=0; i<N; i++)
 for (j=0; j<ElementsOnRow[i]; j++)
 convolution (i, j);

for (i=0; i<N; i++)
 for (j=0; j<M; j++)
 convolution (i, j);

Poor solution #1: Oversubscription.
Poor solution #2: Serialization.

max(ElementsOnRow[i])

N

The simplest impossible parallel program:
Workload is unknown at compile-time.
The challenge is data partitioning.

M

N

How you represent a sparse matrix
in a Compressed Column Format

Example for a 5x5 matrix:

24

27

75

52

61 11

33

42

21

87

27 75 52

27

75

52

61

11

33

42

21

87
61 87 2111 33 42

0

0

4

4
1+

6

6
2+

7

7
1+

9

9
2+

3

3
3+

3 51

1

3

5
2

2

3 4

3

4

5
5

2 4

2

4

value

as traversed vertically

rowidx
Row indices horiz. position for each value

colptr

number of elements on
each column (accumulated)

for (i=0; i<N; i++)
 for (j=colptr[i]; j<colptr[i+1]; j++)
 value[j] += value[j];

Given the data structure, this is how you traverse matrix:

A challenge for CUDA programmers around
the world: Performed on 8 countries so far

What the program does: Iterate in parallel on each
element of a sparse matrix compressed by columns.

The sparse matrix may have N=100 or N=200 columns, each with
a different number of nonzero elements. “numops” operations are
performed on each element:

25

max(ElementsOnCol[i])

N
loop i

loop j

for (i=0; i<N; i++)
 for (j=colptr[i]; j<colptr[i+1]; j++)
 for (k=0;k<numops;k++)
 value[j] += value[j];

All loops are fully parallel.
Workload is unknown at compile-time.
The challenge is data partitioning:

Deploy streams, kernels, blocks and threads wisely.

Input sparse matrices
(taken from the Matrix Market collection)

26

Application area Matrix rows Matrix columns Nozeros Workload

Economics

Demography

Oceanography

Quantum physics

Linear algebra

Image processing

Astrophysics

Biochemistry

300 100 22.000 Base

6.000 100 440.000 20 x Base

24.000 100 1.760.000 160 x Base

96.000 100 7.040.000 2560 x Base

200 200 27.000 Base

4.000 200 540.000 20 x Base

32.000 200 4.320.000 160 x Base

512.000 200 69.120.000 2560 x Base

You can try different operands and operators

27

What each thread does:
int float double value[numelements];
for all elements assigned to each thread:
 for numops. to be done on each element
 value[i] *= value[i];

Sparse matrices processing

int

int float double

SMX in Kepler: 512 parallel functional units

6x32 = 192 ALUs 192 SP FPU

64 DP FPU

32 LD/ST

32 SFU

Changing the operator to lighter (addition)
or heavier (division) will also have an impact
depending on the time spent to perform
each operation (its latency).

Example strategy:
We launch a CUDA kernel for each matrix column.
Each kernel will have the lowest number of blocks.
Each kernel will have the largest number of warps.
Each thread will be as thin as possible (computes on a single elem.)

3: Data par. (SIMD)

And you have to choose
the winner parallelization strategy

28

1: Thread-level parallelism (TLP)

2:
 I

ns
tr

uc
tio

n-
le

ve
l p

ar
. (

IL
P)

4: Vectorial (warp = 32) Our code traverses the whole matrix,
performing operations independently
on each element.

Sparse matrices processing

The way we create streams. An example of
3 streams, each composed of 3 kernels

29

__global__ kernel_A(pars) {body} // Same for B...Z
cudaStream_t stream_1, stream_2, stream_3;
...
cudaStreamCreatewithFlags(&stream_1, ...);
cudaStreamCreatewithFlags(&stream_2, ...);
cudaStreamCreatewithFlags(&stream_3, ...);
...
kernel_A <<< dimgridA, dimblockA, 0, stream_1 >>> (pars);
kernel_B <<< dimgridB, dimblockB, 0, stream_1 >>> (pars);
kernel_C <<< dimgridC, dimblockC, 0, stream_1 >>> (pars);
...
kernel_P <<< dimgridP, dimblockP, 0, stream_2 >>> (pars);
kernel_Q <<< dimgridQ, dimblockQ, 0, stream_2 >>> (pars);
kernel_R <<< dimgridR, dimblockR, 0, stream_2 >>> (pars);
...
kernel_X <<< dimgridX, dimblockX, 0, stream_3 >>> (pars);
kernel_Y <<< dimgridY, dimblockY, 0, stream_3 >>> (pars);
kernel_Z <<< dimgridZ, dimblockZ, 0, stream_3 >>> (pars);

st
re

a
m

 1

stream_1

kernel_A

kernel_B

kernel_C

stream_2

kernel_P

kernel_Q

kernel_R

stream_3

kernel_X

kernel_Y

kernel_Z

st
re

a
m

 2
st

re
a
m

 3

Top 10 optimizations performed by students

1. Increase the number of operations per element (1024).
2. Increase the sparse matrix size (up to 69M nonzeros).
3. Change the operator (add/sub/mul/div).
4. Change the operand (int/float/double).
5. Tune the CUDA block size (384 threads per block).
6. Group blocks in kernels and those in streams to express
more parallelism.
7. Optimize memory access using shared memory and regs.
8. Guide the compiler via #pragma unroll directives.
9. Enable the fused multiply-add operator.
10. Use vector instructions to exploit (x,y,z,w) and (r,g,b,a). 30

Performance attained on a GeForce GTX480
(peak performance 1330 GFLOPS on 32-bit)

31

Optimization Acceler. Performance

Departure point

1. Increase the number of operations per element (up to 1024)

2. Use a bigger sparse matrix (up to 69.120.000 nonzeros)

3. Choose the sum operator (add)

4. Replace the double operand (64-bits) by float (32-bit)

5. Tune the block size (384 threads)

6. Group kernels in streams

7. Optimize memory accesses using shared memory and registers

8. Unroll the loop via a #pragma unroll compiler directive

9. Enable the FMADD (fused multiply-add) operator

10. Enable vector processing on computational sentences (4 in 1)

1.2 Saturate the number of operations (up to 1M)

8.2 Saturate the loop unroll factor (until 4096)

2.2 Generate a huge matrix to exploit GPU scalability

2.3 Tune the matrix to match the structure of CUDA parallelism

0.0008 GFLOPS0.0008 GFLOPS

250.00 x 0.20 GFLOPS

116.35 x 23.27 GFLOPS

1.00 x 23.27 GFLOPS

1.89 x 44.00 GFLOPS

1.00 x 44.00 GFLOPS

1.00 x 44.00 GFLOPS

3.19 x 140.75 GFLOPS

4.07 x 573.95 GFLOPS

2.15 x 1236.58 GFLOPS

1.00 x 1236.58 GFLOPS

1.02 x 1260.00 GFLOPS

1.01 x 1280.00 GFLOPS

1.02 x 1310.00 GFLOPS

1.01 x 1330.00 GFLOPS

