Squeezing GPU performance

GPGPU 2015: High Performance Computing with CUDA University of Cape Town (South Africa), April, 20th-24th, 2015

Let's make a Malaga - Madrid travel (500 km)

Effective time using the train:

- Preliminaries: 3 minutes.
- Travel: 2 hours, 30 minutes.
- Closing: 2 minutes.
- TOTAL: 2 hours, 35 minutes.
- Effective time using the plane:
 - Preliminaries: 90 minutes.
 - Travel: 50 minutes.
 - Closing: 30 minutes.
 - TOTAL: 2 hours, 50 minutes (and you are away from downtown!)

GPU peak performance vs. CPU

Peak Double Precision FLOPS

Peak Memory Bandwidth

The real speed of my car

Maximum: 250 km/h.

Average on a 10
 years use:
 50 km/h.

So I regularly use my car at 20% of peak performance. Should I be disappointed?

Instructions for the game available on the web site: <u>http://cms.ac.uma.es/kepler</u>

CUDA chall	HOME CREDITS ACKNOWLEDGEMENTS					
instructions	₩. <mark></mark>					
The input data set	Welcome!					
= How to play	This practical tutorial provides you an easy way to interact with features of the GPUs based on the Kepler architecture, like:					
= Frequently asked questions						
Using GPUs	Ways to deploy massive parallelism via blocks, kernels and streams for Hyper-Q. Computing power (GFLOPS) and data bandwidth (GB/s.).					
= At UMA	tency to operands (intrinsiduddube) and operators (add/mu/div).					
= In the cloud	tou acce unlease claimings here as cours programmer. In the second of the second seco					
= At home						
The quiz						
 Participants 	Enjoy the hands-on and good luck with CUDA!					
 Higher scores 						
- The winner strategy						

22

How you represent a sparse matrix in a Compressed Column Format

for (j=colptr[i]; j<colptr[i+1]; j++)</pre>

value[j] += value[j];

Forall loop execution versus data-dependent parallelism

The simplest possible parallel program:

- Loops are parallelizable.
- Workload is known at compile-time.

for (i=0; i<N; i++)
for (j=0; j<M; j++)
 convolution (i, j);</pre>

The simplest impossible parallel program:

Workload is unknown at compile-time.

The challenge is data partitioning.

N

Poor solution #1: Oversubscription. Poor solution #2: Serialization.

A challenge for CUDA programmers around the world: Performed on 8 countries so far

What the program does: Iterate in parallel on each element of a sparse matrix compressed by columns.

The sparse matrix may have N=100 or N=200 columns, each with a different number of nonzero elements. "numops" operations are performed on each element:

Input sparse matrices (taken from the Matrix Market collection)

Application area	Matrix rows	Matrix columns	Nozeros	Workload
Economics	300	100	22.000	Base
Demography	6.000	100	440.000	20 x Base
Oceanography	24.000	100	1.760.000	160 x Base
Quantum physics	96.000	100	7.040.000	2560 x Base
Linear algebra	200	200	27.000	Base
Image processing	4.000	200	540.000	20 x Base
Astrophysics	32.000	200	4.320.000	160 x Base
Biochemistry	512.000	200	69.120.000	2560 x Base

OVIDIA.

eam

ε

O.

26

And you have to choose the winner parallelization strategy

Our code traverses the whole matrix, performing operations independently on each element.

• We launch a CUDA kernel for each matrix column.

- Each kernel will have the lowest number of blocks.
- Each kernel will have the largest number of warps.
- Each thread will be as thin as possible (computes on a single elem.) 28

Manuel Ujaldon - Nvidia CUDA Fellow

You can try different operands and operators

NVIDIA.

The way we create streams. An example of 3 streams, each composed of 3 kernels

	global kernel_A(pars) {body} // Sau cudaStream_t stream_1, stream_2, stream	me for BZ stream_1 m_3; kernel A
		kemei_A
	<pre>cudaStreamCreatewithFlags(&stream 1, .</pre>	kernel_B
	cudaStreamCreatewithFlags(&stream 2.	kernel C
	cudaStreamCreatewithElags(&stream 3) ·
	cudastieamcieatewithriags(astieam_5, .	••);
÷		stream 2
L	<pre>kernel_A <<< dimgridA, dimblockA, 0, stream_</pre>	1 >>> (pars);
L	<pre>kernel_B <<< dimgridB, dimblockB, 0, stream_</pre>	_1 >>> (pars); kernel_P
Ļ	<pre>kernel_C <<< dimgridC, dimblockC, 0, stream_</pre>	1 >>> (pars); kernel_Q
		kernel R
	kernel P <<< dimgridP, dimblockP, 0, stream	2 >>> (pars);
	kernel 0 <<< dimgrid0, dimblock0, 0, stream	2 >>> (pars);
I	kernel R <<< dimgridB, dimblockB, 0, stream	2 >>> (pars); stream 3
1	noinoi_n angina, andiona, o, boioan_	
ī.	kornol V (((dimunidy disklashy a stroom)	kernel_X
	Keiner_A <<< aimgriaX, aimblockX, 0, Stiedlin_	kernel Y
	<pre>kernel_Y <<< dimgridY, dimblockY, 0, stream_</pre>	_3 >>> (pars); kornol 7
ŧ	<pre>kernel_Z <<< dimgridz, dimblockz, 0, stream_</pre>	_3 >>> (pars); kernel_Z

Top 10 optimizations performed by students

- 1. Increase the number of operations per element (1024).
- 2. Increase the sparse matrix size (up to 69M nonzeros).
- 3. Change the operator (add/sub/mul/div).
- 4. Change the operand (int/float/double).
- 5. Tune the CUDA block size (384 threads per block).
- 6. Group blocks in kernels and those in streams to express more parallelism.
- 7. Optimize memory access using shared memory and regs.
- 8. Guide the compiler via #pragma unroll directives.
- 9. Enable the fused multiply-add operator.
- 10. Use vector instructions to exploit (x,y,z,w) and (r,g,b,a).

Performance attained on a GeForce GTX480 (peak performance 1330 GFLOPS on 32-bit)

Optimization	Acceler.	Performance
Departure point	0.0008 GFLOPS	
1. Increase the number of operations per element (up to 1024)	250.00 x	0.20 GFLOPS
2. Use a bigger sparse matrix (up to 69.120.000 nonzeros)	116.35 x	23.27 GFLOPS
3. Choose the sum operator (add)	1.00 x	23.27 GFLOPS
4. Replace the double operand (64-bits) by float (32-bit)	1.89 x	44.00 GFLOPS
5. Tune the block size (384 threads)	1.00 x	44.00 GFLOPS
6. Group kernels in streams	1.00 x	44.00 GFLOPS
7. Optimize memory accesses using shared memory and registers	3.19 x	140.75 GFLOPS
8. Unroll the loop via a #pragma unroll compiler directive	4.07 x	573.95 GFLOPS
9. Enable the FMADD (fused multiply-add) operator	2.15 x	1236.58 GFLOPS
10. Enable vector processing on computational sentences (4 in 1)	1.00 x	1236.58 GFLOPS
1.2 Saturate the number of operations (up to 1M)	1.02 x	1260.00 GFLOPS
8.2 Saturate the loop unroll factor (until 4096)	1.01 x	1280.00 GFLOPS
2.2 Generate a huge matrix to exploit GPU scalability	1.02 x	1310.00 GFLOPS
2.3 Tune the matrix to match the structure of CUDA parallelism	1.01 x	1330.00 GFLOPS