
NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Applications I

John E. Stone

Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/gpu/

Cape Town GPU Workshop

Cape Town, South Africa, May 2, 2013

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Electrons in
Vibrating Buckyball

Cellular Tomography,

 Cryo-electron Microscopy

Poliovirus

Ribosome Sequences

VMD – “Visual Molecular Dynamics”

Whole Cell Simulations

• Visualization and analysis of:

– molecular dynamics simulations

– quantum chemistry calculations

– particle systems and whole cells

– sequence data

• User extensible w/ scripting and plugins

• http://www.ks.uiuc.edu/Research/vmd/

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Accelerated Trajectory Analysis

and Visualization in VMD
GPU-Accelerated Feature Peak speedup vs.

single CPU core

Molecular orbital display 120x

Radial distribution function 92x

Electrostatic field calculation 44x

Molecular surface display 40x

Ion placement 26x

MDFF density map synthesis 26x

Implicit ligand sampling 25x

Root mean squared fluctuation 25x

Radius of gyration 21x

Close contact determination 20x

Dipole moment calculation 15x

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Ongoing VMD GPU Development

• Development of new CUDA kernels for common
molecular dynamics trajectory analysis tasks

• Increased memory efficiency of CUDA kernels for
visualization and analysis of large structures

• Improving CUDA performance for batch mode
MPI version of VMD used for in-place trajectory
analysis calculations:

– GPU-accelerated commodity clusters

– GPU-accelerated Cray XK7 supercomputers:
NCSA Blue Waters, ORNL Titan

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Interactive Display & Analysis of Terabytes of Data:
Out-of-Core Trajectory I/O w/ Solid State Disks and GPUs

• Timesteps loaded on-the-fly (out-of-core)

– Eliminates memory capacity limitations, even for multi-terabyte trajectory files

– High performance achieved by new trajectory file formats, optimized data structures, and

efficient I/O

• GPUs accelerate per-timestep calculations

• Analyze long trajectories significantly faster using just a personal computer

Immersive out-of-core visualization of large-size and long-timescale
molecular dynamics trajectories. J. Stone, K. Vandivort, and K. Schulten.

Lecture Notes in Computer Science, 6939:1-12, 2011.

Commodity SSD, SSD RAID

TWO DVD movies
per second!

450MB/sec

to 8GB/sec

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Challenges for Immersive Visualization of Dynamics

of Large Structures

• Graphical representations re-computed each

trajectory timestep

• Visualizations often focus on interesting regions

of substructure

• Fast display updates require rapid sparse

traversal+gathering of molecular data for use in

GPU computations and OpenGL display

– Hand-vectorized SSE/AVX CPU atom selection traversal

code increased performance of per-frame updates by

another ~6x for several 100M atom test cases

• Graphical representation optimizations:

– Reduce host-GPU bandwidth for displayed geometry

– Optimized graphical representation generation routines

for large atom counts, sparse selections

116M atom BAR domain test case:
200,000 selected atoms,

stereo trajectory animation 70 FPS,
static scene in stereo 116 FPS

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DisplayDevice

OpenGLRenderer CAVE

FreeVR

Windowed OpenGL

Display

Subsystem

Scene Graph

Molecular Structure Data and Global VMD State

User Interface

Subsystem

6DOF Input

Position

Buttons

Force

Feedback

Tcl/Python Scripting

Mouse + Windows

VR “Tools”

Graphical

Representations

Non-Molecular

Geometry

DrawMolecule

I
n

t
e

r
a

c
t
i
v
e

M

D

CAVE Wand

Haptic Device

Spaceball

VRPN

Smartphone

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Improving Performance for Large Datasets

• As the performance of GPUs has continued to increase, formerly

“insignificant” CPU routines are becoming bottlenecks

– A key feature of VMD is the ability to perform visualization and analysis

operations on arbitrary user-selected subsets of the molecular structure

– CPU-side atom selection traversal performance has begun to be a potential

bottleneck when working with large structures of tens of millions of atoms

– Both OpenGL rendering and CUDA analysis kernels (currently) depend on the

CPU to gather selected atom data into buffers that are sent to the GPU

– Hand-coded SSE/AVX optimizations have now improved the performance of

these CPU preprocessing steps by up to 6x, keeping the CPU “out of the way”

20M atoms:

membrane patch and solvent

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Improving Performance for Large Datasets:

Make Key Data Structures GPU-Resident
• Eliminating the dependency on the host CPU to traverse, collect,

and pack atom data will enable much higher GPU performance

• Long-term, best performance will be obtained by storing all

molecule data locally in on-board GPU memory

– GPU needs enough memory to store both molecular information, as well as

the generated vertex arrays and texture maps used for rendering

– With sufficient memory, only per-timestep time-varying data will have to

copied into the GPU on-the-fly, and most other data can remain GPU-resident

– Today’s GPUs have insufficient memory for very large structures, where the

resulting performance increases would have the greatest impact

– Soon we should begin to see GPUs with 16GB of on-board memory – enough

to keep all of the static molecular structure data on the GPU full-time

• Once the full molecular data is GPU-resident, CUDA kernels can

directly incorporate atom selection traversal for themselves

• CUDA Dynamic Parallelism will make more GPUs self sufficient

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Ribosome w/ solvent

3M atoms

3 frames/sec w/ HD

77 frames/sec w/ SSDs

Membrane patch w/ solvent

20M atoms

0.4 frames/sec w/ HD

10 frames/sec w/ SSDs

VMD Out-of-Core Trajectory I/O Performance:

SSD Trajectory Format, PCIe3 8-SSD RAID

New SSD Trajectory File Format 2x Faster vs. Existing Formats

VMD I/O rate ~2.7 GB/sec w/ 8 SSDs in a single PCIe3 RAID0

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Challenges for High Throughput

Trajectory Visualization and Analysis

• It is not currently possible to fully exploit full I/O

bandwidths when streaming data from SSD arrays

(>4GB/sec) to GPU global memory due to copies

• Need to eliminated copies from disk controllers to

host memory – bypass host entirely and perform

zero-copy DMA operations straight from disk

controllers to GPU global memory

• Goal: GPUs directly pull in pages from storage

systems bypassing host memory entirely

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD for Demanding Analysis Tasks

Parallel VMD Analysis w/ MPI

• Analyze trajectory frames,
structures, or sequences in
parallel on clusters and
supercomputers:

– Compute time-averaged electrostatic
fields, MDFF quality-of-fit, etc.

– Parallel rendering, movie making

• Addresses computing
requirements beyond desktop

• User-defined parallel reduction
operations, data types

• Dynamic load balancing:

– Tested with up to 15,360 CPU cores

• Supports GPU-accelerated
clusters and supercomputers

VMD

VMD

VMD

Sequence/Structure Data,

Trajectory Frames, etc…

Gathered Results

Data-Parallel

Analysis in
VMD

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Time-Averaged Electrostatics Analysis

on Energy-Efficient GPU Cluster
• 1.5 hour job (CPUs) reduced to

3 min (CPUs+GPU)

• Electrostatics of thousands of
trajectory frames averaged

• Per-node power consumption on
NCSA “AC” GPU cluster:

– CPUs-only: 299 watts

– CPUs+GPUs: 742 watts

• GPU Speedup: 25.5x

• Power efficiency gain: 10.5x

Quantifying the Impact of GPUs on Performance and Energy
Efficiency in HPC Clusters. J. Enos, C. Steffen, J. Fullop, M.

Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J. Phillips.
The Work in Progress in Green Computing, pp. 317-324, 2010.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NCSA Blue Waters Early Science System

Cray XK6 nodes w/ NVIDIA Tesla X2090

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Time-Averaged Electrostatics Analysis on

NCSA Blue Waters

Preliminary performance for VMD time-averaged electrostatics w/ Multilevel
Summation Method on the NCSA Blue Waters Early Science System

NCSA Blue Waters Node Type Seconds per trajectory

frame for one compute

node

Cray XE6 Compute Node:

32 CPU cores (2xAMD 6200 CPUs)

9.33

Cray XK6 GPU-accelerated Compute Node:

16 CPU cores + NVIDIA X2090 (Fermi) GPU

2.25

Speedup for GPU XK6 nodes vs. CPU XE6 nodes GPU nodes are 4.15x

faster overall

Early tests on XK7 nodes indicate MSM is becoming

CPU-bound with the Kepler K20X GPU

Performance is not much faster (yet) than Fermi X2090

May need to move spatial hashing and other algorithms

onto the GPU.

In progress….

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Early Experiences with Kepler
Preliminary Observations

• Arithmetic is cheap, memory references are costly
(trend is certain to continue & intensify…)

• Different performance ratios for registers, shared mem,
and various floating point operations vs. Fermi

• Kepler GK104 (e.g. GeForce 680) brings improved
performance for some special functions vs. Fermi:

CUDA Kernel Dominant

Arithmetic

Operations

Kepler (GeForce 680)

Speedup vs.

Fermi (Quadro 7000)

Direct Coulomb summation rsqrtf() 2.4x

Molecular orbital grid evaluation expf(), exp2f(),

Multiply-Add

1.7x

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Surface Visualization

Poliovirus

• Large biomolecular

complexes are difficult to

interpret with atomic detail

graphical representations

• Even secondary structure

representations become

cluttered

• Surface representations are

easier to use when greater

abstraction is desired, but are

computationally costly

• Most surface display methods

incapable of animating

dynamics of large structures

w/ millions of particles

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

• Displays continuum of structural detail:

– All-atom models

– Coarse-grained models

– Cellular scale models

– Multi-scale models: All-atom + CG, Brownian + Whole Cell

– Smoothly variable between full detail, and reduced resolution

representations of very large complexes

VMD “QuickSurf” Representation

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and
Particle System Trajectories.

M. Krone, J. E. Stone, T. Ertl, K. Schulten. EuroVis Short Papers, pp. 67-71, 2012

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

• Uses multi-core CPUs and GPU acceleration to enable smooth

real-time animation of MD trajectories

• Linear-time algorithm, scales to millions of particles, as limited

by memory capacity

VMD “QuickSurf” Representation

Satellite Tobacco Mosaic Virus Lattice Cell Simulations

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD “QuickSurf” Representation

All-atom HIV capsid simulations

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Discretized lattice models derived
from continuous model shown in
VMD QuickSurf representation

Continuous particle
based model – often 70
to 300 million particles

Lattice Microbes: High‐performance stochastic simulation method for the
reaction‐diffusion master equation

E. Roberts, J. E. Stone, and Z. Luthey‐Schulten.
J. Computational Chemistry 34 (3), 245-255, 2013.

QuickSurf Representation of

Lattice Cell Models

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Algorithm Overview
• Build spatial acceleration

data structures, optimize

data for GPU

• Compute 3-D density map,

3-D volumetric texture map:

• Extract isosurface for a

user-defined density value

3-D density map lattice,
spatial acceleration grid,

and extracted surface

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Particle Sorting, Bead

Generation, Spatial Hashing
• Particles sorted into spatial acceleration grid:

– Selected atoms or residue “beads” converted lattice

coordinate system

– Each particle/bead assigned cell index, sorted

w/NVIDIA Thrust template library

• Complication:

– Thrust allocates GPU mem. on-demand, no recourse

if insufficient memory, have to re-gen QuickSurf data

structures if caught by surprise!

• Workaround:

– Pre-allocate guesstimate workspace for Thrust

– Free the Thrust workspace right before use

– Newest Thrust allows user-defined allocator code…

Coarse resolution
spatial acceleration grid

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Spatial Hashing Algorithm Steps/Kernels

1) Compute bin index for each atom,
store to memory w/ atom index

QuickSurf uniform
grid spatial

subdivision data
structure

2) Sort list of bin and atom index tuples
(1) by bin index (thrust kernel)

3) Count atoms in each bin (2) using a
parallel prefix sum, aka scan,
compute the destination index for each
atom, store per-bin starting index and
atom count (thrust kernel)

4) Write atoms to the output indices
computed in (3), and we have
completed the data structure

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf and Limited GPU Global Memory
• High resolution molecular surfaces require a fine lattice spacing

• Memory use grows cubically with decreased lattice spacing

• Not typically possible to compute a surface in a single pass, so we

loop over sub-volume “chunks” until done…

• Chunks pre-allocated and sized to GPU global mem capacity to

prevent unexpected memory allocation failure while animating…

• Complication:

– Thrust allocates GPU mem. on-demand, no recourse if insufficient memory,

have to re-gen QuickSurf data structures if caught by surprise!

• Workaround:

– Pre-allocate guesstimate workspace for Thrust

– Free the Thrust workspace right before use

– Newest Thrust allows user-defined allocator code…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Padding optimizes global
memory performance,
guaranteeing coalesced
global memory accesses Grid of thread blocks

Small 8x8 thread

blocks afford large

per-thread register

count, shared

memory

QuickSurf 3-D density map

decomposes into thinner 3-D
slabs/slices (CUDA grids)

… 0,0 0,1

1,1

… …

…

…

Inactive threads,
region of
discarded
output

Each thread

computes

one or more

density map

lattice points

Threads
producing
results that
are used 1,0

…

Chunk 2

Chunk 1

Chunk 0

Large volume

computed in

multiple passes, or

multiple GPUs

QuickSurf Density Parallel Decomposition

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Density Map Algorithm

• Spatial acceleration grid cells are

sized to match the cutoff radius for

the exponential, beyond which density

contributions are negligible

• Density map lattice points computed

by summing density contributions

from particles in 3x3x3 grid of

neighboring spatial acceleration cells

• Volumetric texture map is computed

by summing particle colors

normalized by their individual density

contribution

3-D density map
lattice point and
the neighboring

spatial acceleration
cells it references

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Density Map

 Kernel Optimizations

• Compute reciprocals, prefactors, other math on the host

CPU prior to kernel launch

• Use of intN and floatN vector types in CUDA kernels

for improved global memory bandwidth

• Thread coarsening: one thread computes multiple

output densities and colors

• Input data and register tiling: share blocks of input,

partial distances in regs shared among multiple outputs

• Global memory (L1 cache) broadcasts: all threads in

the block traverse the same atom/particle at the same

time

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Density Map Kernel Snippet…
for (zab=zabmin; zab<=zabmax; zab++) {

 for (yab=yabmin; yab<=yabmax; yab++) {

 for (xab=xabmin; xab<=xabmax; xab++) {

 int abcellidx = zab * acplanesz + yab * acncells.x + xab;

 uint2 atomstartend = cellStartEnd[abcellidx];

 if (atomstartend.x != GRID_CELL_EMPTY) {

 for (unsigned int atomid=atomstartend.x; atomid<atomstartend.y; atomid++) {

 float4 atom = sorted_xyzr[atomid];

 float dx = coorx - atom.x; float dy = coory - atom.y; float dz = coorz - atom.z;

 float dxy2 = dx*dx + dy*dy;

 float r21 = (dxy2 + dz*dz) * atom.w;

 densityval1 += exp2f(r21);

 /// Loop unrolling and register tiling benefits begin here……

 float dz2 = dz + gridspacing;

 float r22 = (dxy2 + dz2*dz2) * atom.w;

 densityval2 += exp2f(r22);

 /// More loop unrolling ….

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Marching Cubes

Isosurface Extraction
• Isosurface is extracted from each density map “chunk”, and

either copied back to the host, or rendered directly out of

GPU global memory via CUDA/OpenGL interop

• All MC memory buffers are pre-allocated to prevent

significant overhead when animating a simulation trajectory

QuickSurf 3-D density map

decomposes into thinner 3-D
slabs/slices (CUDA grids)

…

Chunk 2

Chunk 1

Chunk 0

Large volume

computed in

multiple passes

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Brief Marching Cubes Isosurface

Extraction Overview
• Given a 3-D volume of scalar density values and a requested

surface density value, marching cubes computes vertices and

triangles that compose the requested surface triangle mesh

• Each MC “cell” (a cube with 8 density values at its vertices)

produces a variable number of output vertices depending on how

many edges of the cell contain the requested isovalue…

• Use scan() to compute the output indices so that each worker

thread has conflict-free output of vertices/triangles

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Brief Marching Cubes Isosurface

Extraction Overview
• Once the output vertices have been computed and stored, we

compute surface normals and colors for each of the vertices

• Although the separate normals+colors pass reads the density map

again, molecular surfaces tend to generate a small percentage of

MC cells containing triangles, we avoid wasting interpolation work

• We use CUDA tex3D() hardware 3-D texture mapping:

– Costs double the texture memory and a one copy from GPU global memory

to the target texture map with cudaMemcpy3D()

– Still roughly 2x faster than doing color interpolation without the texturing

hardware, at least on GT200 and Fermi hardware

– Kepler has new texture cache memory path that may make it feasible to do

our own color interpolation and avoid the use of extra 3-D texture memory

and associated copy, with acceptable performance

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Marching Cubes

Isosurface Extraction
• Our optimized MC implementation computes per-vertex

surface normals, colors, and outperforms the NVIDIA SDK

sample by a fair margin on Fermi GPUs

• Complications:

– Even on a 6GB Quadro 7000, GPU global memory is under great

strain when working with large molecular complexes, e.g. viruses

– Marching cubes involves a parallel prefix sum (scan) to compute

target indices for writing resulting vertices

– We use Thrust for scan, has the same memory allocation issue

mentioned earlier for the sort, so we use the same workaround

– The number of output vertices can be huge, but we rarely have

sufficient GPU memory for this – we use a fixed size vertex output

buffer and hope our heuristics don’t fail us

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Performance

GeForce GTX 580
Molecular

system

Atoms Resolution Tsort Tdensity TMC

vertices FPS

MscL 111,016 1.0Å 0.005 0.023 0.003 0.7 M 28

STMV capsid 147,976 1.0Å 0.007 0.048 0.009 2.4 M 13.2

Poliovirus

capsid

754,200 1.0Å 0.01 0.18 0.05 9.2 M 3.5

STMV w/ water 955,225 1.0Å 0.008 0.189 0.012 2.3 M 4.2

Membrane 2.37 M 2.0Å 0.03 0.17 0.016 5.9 M 3.9

Chromatophore 9.62 M 2.0Å 0.16 0.023 0.06 11.5 M 3.4

Membrane w/

water

22.77 M 4.0Å

4.4 0.68 0.01 1.9 M 0.18

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and
Particle System Trajectories.

M. Krone, J. E. Stone, T. Ertl, K. Schulten. EuroVis Short Papers, pp. 67-71, 2012

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Extensions and Analysis Uses for QuickSurf

Triangle Mesh
• Curved PN triangles:

– We have performed tests with post-processing the resulting triangle

mesh and using curved PN triangles to generate smooth surfaces

with a larger grid spacing, for increased performance

– Initial results demonstrate some potential, but there can be

pathological cases where MC generates long skinny triangles,

causing unsightly surface creases

• Analysis uses (beyond visualization):

– Minor modifications to the density map algorithm allow rapid

computation of solvent accessible surface area by summing the

areas in the resulting triangle mesh

– Modifications to the density map algorithm will allow it to be used

for MDFF (molecular dynamics flexible fitting)

– Surface triangle mesh can be used as the input for computing the

electrostatic potential field for mesh-based algorithms

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Challenge: Support Interactive QuickSurf for

Large Structures on Mid-Range GPUs
• Structures such as HIV

initially needed large (6GB)

GPU memory to generate

fully-detailed surface

renderings

• Goals and approach:

– Avoid slow CPU-fallback!

– Incrementally change

algorithm phases to use more

compact data types, while

maintaining performance

– Specialize code for different

performance/memory

capacity cases

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Improving QuickSurf Memory Efficiency

• Both host and GPU memory capacity limitations are a

significant concern when rendering surfaces for virus

structures such as HIV or for large cellular models which

can contain hundreds of millions of particles

• The original QuickSurf implementation used single-

precision floating point for output vertex arrays and

textures

• Judicious use of reduced-precision numerical

representations, cut the overall memory footprint of the

entire QuickSurf algorithm to half of the original

– Data type changes made throughout the entire chain from density

map computation through all stages of Marching Cubes

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Supporting Multiple Data Types for

QuickSurf Density Maps

and Marching Cubes Vertex Arrays

• The major algorithm components of QuickSurf are now

used for many other purposes:

– Gaussian density map algorithm now used for MDFF Cryo EM

density map fitting methods in addition to QuickSurf

– Marching Cubes routines also used for Quantum Chemistry

visualizations of molecular orbitals

• Rather than simply changing QuickSurf to use a particular

internal numerical representation, it is desirable to instead

use CUDA C++ templates to make type-generic versions

of the key objects, kernels, and output vertex arrays

• Accuracy-sensitive algorithms use high-precision data

types, performance and memory capacity sensitive cases

use quantized or reduced precision approaches

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Minimizing the Impact of Generality on

QuickSurf Code Complexity

• A critical factor in the simplicity of supporting multiple

QuickSurf data types arises from the so-called “gather”

oriented algorithm we employ

– Internally, all in-register arithmetic is single-precision

– Data conversions to/from compressed or reduced precision data

types are performed on-the-fly as needed

• Small inlined type conversion routines are defined for each

of the cases we want to support

• Key QuickSurf kernels are genericized using C++ template

syntax, and the compiler “connects the dots” to

automatically generate type-specific kernels as needed

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example Templated

Density Map Kernel
template<class DENSITY, class VOLTEX>

__global__ static void

gaussdensity_fast_tex_norm(int natoms,

 const float4 * RESTRICT sorted_xyzr,

 const float4 * RESTRICT sorted_color,

 int3 numvoxels,

 int3 acncells,

 float acgridspacing,

 float invacgridspacing,

 const uint2 * RESTRICT cellStartEnd,

 float gridspacing, unsigned int z,

 DENSITY * RESTRICT densitygrid,

 VOLTEX * RESTRICT voltexmap,

 float invisovalue) {

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example Templated

Density Map Kernel
template<class DENSITY, class VOLTEX>

__global__ static void

gaussdensity_fast_tex_norm(…) {

 … Triple-nested and unrolled inner loops here …

 DENSITY densityout;

 VOLTEX texout;

 convert_density(densityout, densityval1);

 densitygrid[outaddr] = densityout;

 convert_color(texout, densitycol1);

 voltexmap[outaddr] = texout;

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Net Result of QuickSurf Memory

Efficiency Optimizations

• Halved overall GPU memory use

• Achieved 1.5x to 2x performance gain:

– The “gather” density map algorithm keeps type

conversion operations out of the innermost loop

– Density map global memory writes reduced to half

– Multiple stages of Marching Cubes operate on smaller

input and output data types

– Same code path supports multiple precisions

• Users now get full GPU-accelerated QuickSurf in

many cases that previously triggered CPU-

fallback, all platforms (laptop/desk/super) benefit!

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

High Resolution HIV Surface

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Orbitals

• Visualization of MOs aids in

understanding the chemistry

of molecular system

• MO spatial distribution is

correlated with probability

density for an electron(s)

• Algorithms for computing

other molecular properties are

similar, and can share code

High Performance Computation and Interactive Display of Molecular
Orbitals on GPUs and Multi-core CPUs.

J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten,
2nd Workshop on General-Purpose Computation on Graphics
Pricessing Units (GPGPU-2), ACM International Conference

Proceeding Series, volume 383, pp. 9-18, 2009.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Computing Molecular Orbitals

• Calculation of high
resolution MO grids can
require tens to hundreds of
seconds in existing tools

• Existing tools cache MO
grids as much as possible
to avoid recomputation:

– Doesn’t eliminate the wait
for initial calculation,
hampers interactivity

– Cached grids consume
100x-1000x more memory
than MO coefficients

C60

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Animating Molecular Orbitals
• Animation of (classical

mechanics) molecular

dynamics trajectories

provides insight into

simulation results

• To do the same for QM or

QM/MM simulations one

must compute MOs at ~10

FPS or more

• >100x speedup (GPU) over

existing tools now makes

this possible! C60

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes

Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid

Apply user coloring/texturing

and render the resulting surface

Preprocess MO coefficient data

eliminate duplicates, sort by type, etc…

For current frame and MO index,

retrieve MO wavefunction coefficients

One-time
initialization

For each trj frame, for
each MO shown

Initialize Pool of GPU

Worker Threads

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Padding optimizes global
memory performance,

guaranteeing coalesced
global memory accesses Grid of thread blocks

Small 8x8 thread
blocks afford large

per-thread register
count, shared

memory

MO 3-D lattice
decomposes into 2-D
slices (CUDA grids)

… 0,0 0,1

1,1

… …

…

…

Threads
producing

results that are
discarded

Each thread
computes
one MO

lattice point.

Threads
producing
results that

are used 1,0

…

GPU 2

GPU 1

GPU 0

Lattice can be
computed using
multiple GPUs

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Padding optimizes global
memory performance,
guaranteeing coalesced
global memory accesses Grid of thread blocks

Small 8x8 thread

blocks afford large

per-thread register

count, shared

memory

MO 3-D lattice
decomposes into 2-D
slices (CUDA grids)

… 0,0 0,1

1,1

… …

…

…

Threads
producing
results that are
discarded

Each thread

computes

one MO

lattice point.

Threads
producing
results that
are used 1,0

…

GPU 2

GPU 1

GPU 0

Lattice can be

computed using

multiple GPUs

MO GPU Parallel Decomposition

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

MO GPU Kernel Snippet:
Contracted GTO Loop, Use of Constant Memory

[… outer loop over atoms …]

 float dist2 = xdist2 + ydist2 + zdist2;

 // Loop over the shells belonging to this atom (or basis function)

 for (shell=0; shell < maxshell; shell++) {

 float contracted_gto = 0.0f;

 // Loop over the Gaussian primitives of this contracted basis function to build the atomic

orbital

 int maxprim = const_num_prim_per_shell[shell_counter];

 int shelltype = const_shell_types[shell_counter];

 for (prim=0; prim < maxprim; prim++) {

 float exponent = const_basis_array[prim_counter];

 float contract_coeff = const_basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * __expf(-exponent*dist2);

 prim_counter += 2;

 }

[… continue on to angular momenta loop …]

Constant memory:
nearly register-
speed when array
elements accessed
in unison by all
threads….

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

MO GPU Kernel Snippet:
Unrolled Angular Momenta Loop

 /* multiply with the appropriate wavefunction coefficient */

 float tmpshell=0;

 switch (shelltype) {

 case S_SHELL:

 value += const_wave_f[ifunc++] * contracted_gto;

 break;

[… P_SHELL case …]

 case D_SHELL:

 tmpshell += const_wave_f[ifunc++] * xdist2;

 tmpshell += const_wave_f[ifunc++] * xdist * ydist;

 tmpshell += const_wave_f[ifunc++] * ydist2;

 tmpshell += const_wave_f[ifunc++] * xdist * zdist;

 tmpshell += const_wave_f[ifunc++] * ydist * zdist;

 tmpshell += const_wave_f[ifunc++] * zdist2;

 value += tmpshell * contracted_gto;

 break;

[... Other cases: F_SHELL, G_SHELL, etc …]

} // end switch

Loop unrolling:

•Saves registers
(important for GPUs!)

•Reduces loop control
overhead

•Increases arithmetic
intensity

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Preprocessing of Atoms, Basis Set, and

Wavefunction Coefficients

• Must make effective use of high bandwidth, low-
latency GPU on-chip shared memory, or L1 cache:

– Overall storage requirement reduced by eliminating
duplicate basis set coefficients

– Sorting atoms by element type allows re-use of basis set

coefficients for subsequent atoms of identical type

• Padding, alignment of arrays guarantees coalesced

GPU global memory accesses

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Traversal of Atom Type, Basis Set,

 Shell Type, and Wavefunction Coefficients

• Loop iterations always access same or consecutive
array elements for all threads in a thread block:

– Yields good constant memory and L1 cache performance

– Increases shared memory tile reuse

Monotonically increasing memory references

Strictly sequential memory references

Different at each
timestep, and for

each MO

Constant for all MOs,
all timesteps

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Use of GPU On-chip Memory
• If total data less than 64 kB, use only const mem:

– Broadcasts data to all threads, no global memory accesses!

• For large data, shared memory used as a program-managed
cache, coefficients loaded on-demand:

– Tiles sized large enough to service entire inner loop runs, broadcast to all
64 threads in a block

– Complications: nested loops, multiple arrays, varying length

– Key to performance is to locate tile loading checks outside of the two
performance-critical inner loops

– Only 27% slower than hardware caching provided by constant memory
(on GT200)

• Fermi/Kepler GPUs have larger on-chip shared memory, L1/L2
caches, greatly reducing control overhead

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

MO coefficient array in GPU global memory.

Tiles are referenced in consecutive order.

Array tile loaded in GPU shared memory. Tile size is a power-of-two, a

multiple of coalescing size, and allows simple indexing in inner loops.

Global memory array indices are merely offset to reference an MO

coefficient within a tile loaded in fast on-chip shared memory.

64-byte memory
coalescing block

boundaries

Surrounding data,
unreferenced by

next batch of loop
iterations

Full tile
padding

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD MO GPU Kernel Snippet:
Loading Tiles Into Shared Memory On-Demand

[… outer loop over atoms …]

 if ((prim_counter + (maxprim<<1)) >= SHAREDSIZE) {

 prim_counter += sblock_prim_counter;

 sblock_prim_counter = prim_counter & MEMCOAMASK;

 s_basis_array[sidx] = basis_array[sblock_prim_counter + sidx];

 s_basis_array[sidx + 64] = basis_array[sblock_prim_counter + sidx + 64];

 s_basis_array[sidx + 128] = basis_array[sblock_prim_counter + sidx + 128];

 s_basis_array[sidx + 192] = basis_array[sblock_prim_counter + sidx + 192];

 prim_counter -= sblock_prim_counter;

 __syncthreads();

 }

 for (prim=0; prim < maxprim; prim++) {

 float exponent = s_basis_array[prim_counter];

 float contract_coeff = s_basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * __expf(-exponent*dist2);

 prim_counter += 2;

 }

[… continue on to angular momenta loop …]

Shared memory tiles:

•Tiles are checked
and loaded, if
necessary,
immediately prior to
entering key
arithmetic loops

•Adds additional
control overhead to
loops, even with
optimized
implementation

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

New GPUs Bring Opportunities for Higher

Performance and Easier Programming

• NVIDIA’s “Fermi” and “Kepler” GPUs bring:

– Greatly increased peak single- and double-precision

arithmetic rates

– Moderately increased global memory bandwidth

– Increased capacity on-chip memory partitioned into

shared memory and an L1 cache for global memory

– Concurrent kernel execution

– Bidirectional asynchronous host-device I/O

– ECC memory, faster atomic ops, many others…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD MO GPU Kernel Snippet:
Fermi/Kepler kernel based on L1 cache

[… outer loop over atoms …]

 // loop over the shells/basis funcs belonging to this atom

 for (shell=0; shell < maxshell; shell++) {

 float contracted_gto = 0.0f;

 int maxprim = shellinfo[(shell_counter<<4)];

 int shell_type = shellinfo[(shell_counter<<4) + 1];

 for (prim=0; prim < maxprim; prim++) {

 float exponent = basis_array[prim_counter];

 float contract_coeff = basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * __expf(-

exponent*dist2);

 prim_counter += 2;

 }

 [… continue on to angular momenta loop …]

L1 cache:

•Simplifies code!

•Reduces control
overhead

•Gracefully handles
arbitrary-sized
problems

•Matches performance
of constant memory on
Fermi

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

MO Kernel for One Grid Point (Naive C)

Loop over atoms

Loop over shells

Loop over primitives:
largest component of
runtime, due to expf()

Loop over angular
momenta

(unrolled in real code)

…

for (at=0; at<numatoms; at++) {

 int prim_counter = atom_basis[at];

 calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);

 for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {

 int shell_type = shell_symmetry[shell_counter];

 for (prim=0; prim < num_prim_per_shell[shell_counter]; prim++) {

 float exponent = basis_array[prim_counter];

 float contract_coeff = basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * expf(-exponent*dist2);

 prim_counter += 2;

 }

 for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {

 int imax = shell_type - j;

 for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv)

 tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;

 }

 value += tmpshell * contracted_gto;

 shell_counter++;

 }

} …..

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Use of GPU On-chip Memory

• If total data less than 64 kB, use only const mem:

– Broadcasts data to all threads, no global memory accesses!

• For large data, shared memory used as a program-
managed cache, coefficients loaded on-demand:

– Tile data in shared mem is broadcast to 64 threads in a block

– Nested loops traverse multiple coefficient arrays of varying
length, complicates things significantly…

– Key to performance is to locate tile loading checks outside of
the two performance-critical inner loops

– Tiles sized large enough to service entire inner loop runs

– Only 27% slower than hardware caching provided by
constant memory (GT200)

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Performance Evaluation:
Molekel, MacMolPlt, and VMD

 Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

C60-A C60-B Thr-A Thr-B Kr-A Kr-B

Atoms 60 60 17 17 1 1

Basis funcs (unique) 300 (5) 900 (15) 49 (16) 170 (59) 19 (19) 84 (84)

Kernel Cores

GPUs
Speedup vs. Molekel on 1 CPU core

Molekel 1* 1.0 1.0 1.0 1.0 1.0 1.0

MacMolPlt 4 2.4 2.6 2.1 2.4 4.3 4.5

VMD GCC-cephes 4 3.2 4.0 3.0 3.5 4.3 6.5

VMD ICC-SSE-cephes 4 16.8 17.2 13.9 12.6 17.3 21.5

VMD ICC-SSE-approx** 4 59.3 53.4 50.4 49.2 54.8 69.8

VMD CUDA-const-cache 1 552.3 533.5 355.9 421.3 193.1 571.6

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD MO Performance Results for C60
Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

Kernel Cores/GPUs Runtime (s) Speedup

CPU ICC-SSE 1 46.58 1.00

CPU ICC-SSE 4 11.74 3.97

CPU ICC-SSE-approx** 4 3.76 12.4

CUDA-tiled-shared 1 0.46 100.

CUDA-const-cache 1 0.37 126.

CUDA-const-cache-JIT* 1 0.27 173.

(JIT 40% faster)

C60 basis set 6-31Gd. We used an unusually-high resolution MO grid for
accurate timings. A more typical calculation has 1/8th the grid points.

* Runtime-generated JIT kernel compiled using batch mode CUDA tools

**Reduced-accuracy approximation of expf(),
cannot be used for zero-valued MO isosurfaces

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD Single-GPU Molecular Orbital

Performance Results for C60 on Fermi

Kernel Cores/GPUs Runtime (s) Speedup

Xeon 5550 ICC-SSE 1 30.64 1.0

Xeon 5550 ICC-SSE 8 4.13 7.4

CUDA shared mem 1 0.37 83

CUDA L1-cache (16KB) 1 0.27 113

CUDA const-cache 1 0.26 117

CUDA const-cache, zero-copy 1 0.25 122

Intel X5550 CPU, GeForce GTX 480 GPU

Fermi GPUs have caches: match perf. of hand-coded
shared memory kernels. Zero-copy memory transfers
improve overlap of computation and host-GPU I/Os.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Preliminary Single-GPU Molecular Orbital

Performance Results for C60 on Kepler

Kernel Cores/GPUs Runtime (s) Speedup

Xeon 5550 ICC-SSE 1 30.64 1.0

Xeon 5550 ICC-SSE 8 4.13 7.4

CUDA shared mem 1 0.264 116

CUDA L1-cache (16KB) 1 0.228 134

CUDA const-cache 1 0.104 292

CUDA const-cache, zero-copy 1 0.0938 326

Intel X5550 CPU, GeForce GTX 680 GPU

Kepler GK104 (GeForce 680) seems to strongly prefer the
constant cache kernels vs. the others.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD Orbital Dynamics Proof of Concept

One GPU can compute and animate this movie on-the-fly!

CUDA const-cache kernel, Sun Ultra 24, GeForce GTX 285

GPU MO grid calc. 0.016 s

CPU surface gen,

volume gradient, and

GPU rendering

0.033 s

Total runtime 0.049 s

Frame rate 20 FPS

With GPU speedups over 100x, previously insignificant CPU
surface gen, gradient calc, and rendering are now 66% of runtime.

Need GPU-accelerated surface gen next…

threonine

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-GPU Load Balance

• Many early CUDA codes
assumed all GPUs were identical

• Host machines may contain a
diversity of GPUs of varying
capability (discrete, IGP, etc)

• Different GPU on-chip and global
memory capacities may need
different problem “tile” sizes

• Static decomposition works
poorly for non-uniform workload,
or diverse GPUs

GPU 1

14 SMs

GPU N

30 SMs
…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Padding optimizes global
memory performance,

guaranteeing coalesced
global memory accesses Grid of thread blocks

Small 8x8 thread
blocks afford large

per-thread register
count, shared

memory

MO 3-D lattice
decomposes into 2-D
slices (CUDA grids)

… 0,0 0,1

1,1

… …

…

…

Threads
producing

results that are
discarded

Each thread
computes
one MO

lattice point.

Threads
producing
results that

are used 1,0

…

GPU 2

GPU 1

GPU 0

Lattice can be
computed using
multiple GPUs

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-GPU Dynamic Work Distribution

// Each GPU worker thread loops over

// subset of work items…

while (!threadpool_next_tile(&parms,

tilesize, &tile){

 // Process one work item…

 // Launch one CUDA kernel for each

 // loop iteration taken…

 // Shared iterator automatically

 // balances load on GPUs

}

GPU 1 GPU N
…

Dynamic work
distribution

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example Multi-GPU Latencies
4 C2050 GPUs, Intel Xeon 5550

 6.3us CUDA empty kernel (immediate return)

 9.0us Sleeping barrier primitive (non-spinning

 barrier that uses POSIX condition variables to prevent

 idle CPU consumption while workers wait at the barrier)

 14.8us pool wake, host fctn exec, sleep cycle (no CUDA)

 30.6us pool wake, 1x(tile fetch, simple CUDA kernel launch), sleep

1817.0us pool wake, 100x(tile fetch, simple CUDA kernel launch), sleep

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-GPU Runtime

Error/Exception Handling
• Competition for resources

from other applications can
cause runtime failures, e.g.
GPU out of memory half way
through an algorithm

• Handle exceptions, e.g.
convergence failure, NaN
result, insufficient compute
capability/features

• Handle and/or reschedule
failed tiles of work

GPU 1

SM 1.1

128MB

GPU N

SM 2.0

3072MB

…

Original
Workload

Retry Stack

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD Multi-GPU Molecular Orbital

Performance Results for C60

Intel Q6600 CPU, 4x Tesla C1060 GPUs,

Uses persistent thread pool to avoid GPU init overhead,
dynamic scheduler distributes work to GPUs

Kernel Cores/GPUs Runtime (s) Speedup Parallel

Efficiency

CPU-ICC-SSE 1 46.580 1.00 100%

CPU-ICC-SSE 4 11.740 3.97 99%

CUDA-const-cache 1 0.417 112 100%

CUDA-const-cache 2 0.220 212 94%

CUDA-const-cache 3 0.151 308 92%

CUDA-const-cache 4 0.113 412 92%

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD Multi-GPU Molecular Orbital

Performance Results for C60

Kernel Cores/GPUs Runtime (s) Speedup

Intel X5550-SSE 1 30.64 1.0

Intel X5550-SSE 8 4.13 7.4

GeForce GTX 480 1 0.255 120

GeForce GTX 480 2 0.136 225

GeForce GTX 480 3 0.098 312

GeForce GTX 480 4 0.081 378

Intel X5550 CPU, 4x GeForce GTX 480 GPUs,

Uses persistent thread pool to avoid GPU init overhead,
dynamic scheduler distributes work to GPUs

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Orbital Dynamic Scheduling

Performance with Heterogeneous GPUs

Kernel Cores/GPUs Runtime (s) Speedup

Intel X5550-SSE 1 30.64 1.0

Quadro 5800 1 0.384 79

Tesla C2050 1 0.325 94

GeForce GTX 480 1 0.255 120

GeForce GTX 480 +

Tesla C2050 +

Quadro 5800

3 0.114 268

(91% of ideal perf)

Dynamic load balancing enables mixture of GPU
generations, SM counts, and clock rates to perform well.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

MO Kernel Structure, Opportunity for JIT…
Data-driven, but representative loop trip counts in (…)

Loop over atoms (1 to ~200) {

Loop over electron shells for this atom type (1 to ~6) {

Loop over primitive functions for this shell type (1 to ~6) {

}

Loop over angular momenta for this shell type (1 to ~15) {}

}

}

Unpredictable (at compile-time, since data-driven) but
small loop trip counts result in significant loop overhead.
Dynamic kernel generation and JIT compilation can

unroll entirely, resulting in 40% speed boost

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Orbital Computation and Display Process
Dynamic Kernel Generation, Just-In-Time (JIT) C0mpilation

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes

using basis set-specific CUDA kernel

Extract isosurface mesh from 3-D MO grid

Render the resulting surface

Preprocess MO coefficient data

eliminate duplicates, sort by type, etc…

For current frame and MO index,

retrieve MO wavefunction coefficients

One-time
initialization

Generate/compile basis set-specific CUDA kernel

For each trj frame, for
each MO shown

Initialize Pool of GPU

Worker Threads

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

 …..

 contracted_gto = 1.832937 * expf(-7.868272*dist2);

 contracted_gto += 1.405380 * expf(-1.881289*dist2);

 contracted_gto += 0.701383 * expf(-0.544249*dist2);

 // P_SHELL

 tmpshell = const_wave_f[ifunc++] * xdist;

 tmpshell += const_wave_f[ifunc++] * ydist;

 tmpshell += const_wave_f[ifunc++] * zdist;

 value += tmpshell * contracted_gto;

 contracted_gto = 0.187618 * expf(-0.168714*dist2);

 // S_SHELL

 value += const_wave_f[ifunc++] * contracted_gto;

 contracted_gto = 0.217969 * expf(-0.168714*dist2);

 // P_SHELL

 tmpshell = const_wave_f[ifunc++] * xdist;

 tmpshell += const_wave_f[ifunc++] * ydist;

 tmpshell += const_wave_f[ifunc++] * zdist;

 value += tmpshell * contracted_gto;

 contracted_gto = 3.858403 * expf(-0.800000*dist2);

 // D_SHELL

 tmpshell = const_wave_f[ifunc++] * xdist2;

 tmpshell += const_wave_f[ifunc++] * ydist2;

 tmpshell += const_wave_f[ifunc++] * zdist2;

 tmpshell += const_wave_f[ifunc++] * xdist * ydist;

 tmpshell += const_wave_f[ifunc++] * xdist * zdist;

 tmpshell += const_wave_f[ifunc++] * ydist * zdist;

 value += tmpshell * contracted_gto;

 …..

 // loop over the shells belonging to this atom (or basis function)

 for (shell=0; shell < maxshell; shell++) {

 float contracted_gto = 0.0f;

 // Loop over the Gaussian primitives of this contracted

 // basis function to build the atomic orbital

 int maxprim = const_num_prim_per_shell[shell_counter];

 int shell_type = const_shell_symmetry[shell_counter];

 for (prim=0; prim < maxprim; prim++) {

 float exponent = const_basis_array[prim_counter];

 float contract_coeff = const_basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * exp2f(-exponent*dist2);

 prim_counter += 2;

 }

 /* multiply with the appropriate wavefunction coefficient */

 float tmpshell=0;

 switch (shell_type) {

 case S_SHELL:

 value += const_wave_f[ifunc++] * contracted_gto;

 break;

[…..]

 case D_SHELL:

 tmpshell += const_wave_f[ifunc++] * xdist2;

 tmpshell += const_wave_f[ifunc++] * ydist2;

 tmpshell += const_wave_f[ifunc++] * zdist2;

 tmpshell += const_wave_f[ifunc++] * xdist * ydist;

 tmpshell += const_wave_f[ifunc++] * xdist * zdist;

 tmpshell += const_wave_f[ifunc++] * ydist * zdist;

 value += tmpshell * contracted_gto;

 break;

General loop-based
CUDA kernel

Dynamically-generated
CUDA kernel (JIT)

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD MO JIT Performance Results for C60
2.6GHz Intel X5550 vs. NVIDIA C2050

Kernel Cores/GPUs Runtime (s) Speedup

CPU ICC-SSE 1 30.64 1.0

CPU ICC-SSE 8 4.13 7.4

CUDA-JIT, Zero-copy 1 0.174 176

C60 basis set 6-31Gd. We used a high resolution MO grid for accurate
timings. A more typical calculation has 1/8th the grid points.

JIT kernels eliminate overhead for low trip
count for loops, replace dynamic table lookups

with constants, and increase floating point
arithmetic intensity

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Experiments Porting VMD CUDA

Kernels to OpenCL

• Why mess with OpenCL?

– OpenCL is very similar to CUDA, though a few years
behind in terms of HPC features, aims to be the
“OpenGL” of heterogeneous computing

– As with CUDA, OpenCL provides a low-level language
for writing high performance kernels, until compilers
do a much better job of generating this kind of code

– Potential to eliminate hand-coded SSE for CPU
versions of compute intensive code, looks more like C
and is easier for non-experts to read than hand-coded
SSE or other vendor-specific instruction sets, intrinsics

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Orbital Inner Loop, Hand-Coded SSE

Hard to Read, Isn’t It? (And this is the “pretty” version!)
for (shell=0; shell < maxshell; shell++) {

 __m128 Cgto = _mm_setzero_ps();

 for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {

 float exponent = -basis_array[prim_counter];

 float contract_coeff = basis_array[prim_counter + 1];

 __m128 expval = _mm_mul_ps(_mm_load_ps1(&exponent), dist2);

 __m128 ctmp = _mm_mul_ps(_mm_load_ps1(&contract_coeff), exp_ps(expval));

 Cgto = _mm_add_ps(contracted_gto, ctmp);

 prim_counter += 2;

 }

 __m128 tshell = _mm_setzero_ps();

 switch (shell_types[shell_counter]) {

 case S_SHELL:

 value = _mm_add_ps(value, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), Cgto)); break;

 case P_SHELL:

 tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), xdist));

 tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), ydist));

 tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), zdist));

 value = _mm_add_ps(value, _mm_mul_ps(tshell, Cgto));

 break;

Until now, writing SSE kernels for CPUs
required assembly language, compiler

intrinsics, various libraries, or a really smart
autovectorizing compiler and lots of luck...

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Orbital Inner Loop, OpenCL Vec4

Ahhh, much easier to read!!!
for (shell=0; shell < maxshell; shell++) {

 float4 contracted_gto = 0.0f;

 for (prim=0; prim < const_num_prim_per_shell[shell_counter]; prim++) {

 float exponent = const_basis_array[prim_counter];

 float contract_coeff = const_basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * native_exp2(-exponent*dist2);

 prim_counter += 2;

 }

 float4 tmpshell=0.0f;

 switch (const_shell_symmetry[shell_counter]) {

 case S_SHELL:

 value += const_wave_f[ifunc++] * contracted_gto; break;

 case P_SHELL:

 tmpshell += const_wave_f[ifunc++] * xdist;

 tmpshell += const_wave_f[ifunc++] * ydist;

 tmpshell += const_wave_f[ifunc++] * zdist;

 value += tmpshell * contracted_gto;

 break;

OpenCL’s C-like kernel language
is easy to read, even 4-way
vectorized kernels can look
similar to scalar CPU code.

All 4-way vectors shown in green.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Apples to Oranges Performance Results:

OpenCL Molecular Orbital Kernels
Kernel Cores Runtime (s) Speedup

Intel QX6700 CPU ICC-SSE (SSE intrinsics) 1 46.580 1.00

Intel Core2 Duo CPU OpenCL scalar 2 43.342 1.07

Intel Core2 Duo CPU OpenCL vec4 2 8.499 5.36

Cell OpenCL vec4*** no __constant 16 6.075 7.67

Radeon 4870 OpenCL scalar 10 2.108 22.1

Radeon 4870 OpenCL vec4 10 1.016 45.8

GeForce GTX 285 OpenCL vec4 30 0.364 127.9

GeForce GTX 285 CUDA 2.1 scalar 30 0.361 129.0

GeForce GTX 285 OpenCL scalar 30 0.335 139.0

GeForce GTX 285 CUDA 2.0 scalar 30 0.327 142.4

Minor varations in compiler quality can have a strong effect on “tight” kernels. The two
results shown for CUDA demonstrate performance variability with compiler revisions, and
that with vendor effort, OpenCL has the potential to match the performance of other APIs.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Acknowledgements

• Theoretical and Computational Biophysics

Group, University of Illinois at Urbana-

Champaign

• NCSA Blue Waters Team

• NCSA Innovative Systems Lab

• NVIDIA CUDA Center of Excellence,

University of Illinois at Urbana-Champaign

• The CUDA team at NVIDIA

• NIH support: P41-RR005969

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Lattice Microbes: High‐performance stochastic simulation method
for the reaction‐diffusion master equation.
E. Roberts, J. E. Stone, and Z. Luthey‐Schulten.
J. Computational Chemistry 34 (3), 245-255, 2013.

• Fast Visualization of Gaussian Density Surfaces for Molecular
Dynamics and Particle System Trajectories. M. Krone, J. E. Stone,
T. Ertl, and K. Schulten. EuroVis Short Papers, pp. 67-71, 2012.

• Immersive Out-of-Core Visualization of Large-Size and Long-
Timescale Molecular Dynamics Trajectories. J. Stone, K. Vandivort,
and K. Schulten. G. Bebis et al. (Eds.): 7th International Symposium on
Visual Computing (ISVC 2011), LNCS 6939, pp. 1-12, 2011.

• Fast Analysis of Molecular Dynamics Trajectories with Graphics
Processing Units – Radial Distribution Functions. B. Levine, J.
Stone, and A. Kohlmeyer. J. Comp. Physics, 230(9):3556-3569, 2011.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Quantifying the Impact of GPUs on Performance and Energy Efficiency in

HPC Clusters. J. Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V.

Kindratenko, J. Stone, J Phillips. International Conference on Green Computing,

pp. 317-324, 2010.

• GPU-accelerated molecular modeling coming of age. J. Stone, D. Hardy, I.

Ufimtsev, K. Schulten. J. Molecular Graphics and Modeling, 29:116-125, 2010.

• OpenCL: A Parallel Programming Standard for Heterogeneous Computing.

J. Stone, D. Gohara, G. Shi. Computing in Science and Engineering, 12(3):66-

73, 2010.

• An Asymmetric Distributed Shared Memory Model for Heterogeneous

Computing Systems. I. Gelado, J. Stone, J. Cabezas, S. Patel, N. Navarro, W.

Hwu. ASPLOS ’10: Proceedings of the 15th International Conference on

Architectural Support for Programming Languages and Operating Systems, pp.

347-358, 2010.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• GPU Clusters for High Performance Computing. V. Kindratenko, J. Enos, G.

Shi, M. Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu. Workshop on

Parallel Programming on Accelerator Clusters (PPAC), In Proceedings IEEE

Cluster 2009, pp. 1-8, Aug. 2009.

• Long time-scale simulations of in vivo diffusion using GPU hardware.

E. Roberts, J. Stone, L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09:

Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed

Computing, pp. 1-8, 2009.

• High Performance Computation and Interactive Display of Molecular

Orbitals on GPUs and Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K.

Vandivort, W. Hwu, K. Schulten, 2nd Workshop on General-Purpose

Computation on Graphics Pricessing Units (GPGPU-2), ACM International

Conference Proceeding Series, volume 383, pp. 9-18, 2009.

• Probing Biomolecular Machines with Graphics Processors. J. Phillips, J.

Stone. Communications of the ACM, 52(10):34-41, 2009.

• Multilevel summation of electrostatic potentials using graphics processing

units. D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated clusters.

J. Phillips, J. Stone, K. Schulten. Proceedings of the 2008 ACM/IEEE Conference

on Supercomputing, IEEE Press, 2008.

• GPU acceleration of cutoff pair potentials for molecular modeling

applications. C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu.

Proceedings of the 2008 Conference On Computing Frontiers, pp. 273-282, 2008.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J.

Phillips. Proceedings of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors. J.

Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp.

Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. A.

Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical Journal,

93:4006-4017, 2007.

