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Electrons in 
Vibrating Buckyball 

Cellular Tomography, 

 Cryo-electron Microscopy 

Poliovirus 

Ribosome Sequences 

VMD – “Visual Molecular Dynamics” 

Whole Cell Simulations 

• Visualization and analysis of: 

– molecular dynamics simulations 

– quantum chemistry calculations 

– particle systems and whole cells 

– sequence data 

• User extensible w/ scripting and plugins 

• http://www.ks.uiuc.edu/Research/vmd/ 
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GPU Accelerated Trajectory Analysis 

and Visualization in VMD 
GPU-Accelerated Feature Peak speedup vs. 

single CPU core 

Molecular orbital display 120x 

Radial distribution function 92x 

Electrostatic field calculation 44x 

Molecular surface display 40x 

Ion placement 26x 

MDFF density map synthesis  26x 

Implicit ligand sampling 25x 

Root mean squared fluctuation 25x 

Radius of gyration 21x 

Close contact determination 20x 

Dipole moment calculation 15x 
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Ongoing VMD GPU Development 

• Development of new CUDA kernels for common 
molecular dynamics trajectory analysis tasks 

• Increased memory efficiency of CUDA kernels for 
visualization and analysis of large structures 

• Improving CUDA performance for batch mode 
MPI version of VMD used for in-place trajectory 
analysis calculations: 

– GPU-accelerated commodity clusters 

– GPU-accelerated Cray XK7 supercomputers:                         
NCSA Blue Waters, ORNL Titan 
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Interactive Display & Analysis of Terabytes of Data: 
Out-of-Core Trajectory I/O w/ Solid State Disks and GPUs 

• Timesteps loaded on-the-fly (out-of-core) 

– Eliminates memory capacity limitations, even for multi-terabyte trajectory files 

– High performance achieved by new trajectory file formats, optimized data structures, and 

efficient I/O 

• GPUs accelerate per-timestep calculations 

• Analyze long trajectories significantly faster using just a personal computer 

Immersive out-of-core visualization of large-size and long-timescale 
molecular dynamics trajectories.  J. Stone, K. Vandivort, and K. Schulten. 

Lecture Notes in Computer Science, 6939:1-12, 2011. 

Commodity SSD, SSD RAID 

TWO DVD movies 
per second! 

450MB/sec  

to 8GB/sec 
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Challenges for Immersive Visualization of Dynamics 

of Large Structures 

• Graphical representations re-computed each 

trajectory timestep 

• Visualizations often focus on interesting regions 

of substructure 

• Fast display updates require rapid sparse 

traversal+gathering of molecular data for use in 

GPU computations and OpenGL display 

– Hand-vectorized SSE/AVX CPU atom selection traversal 

code increased performance of per-frame updates by 

another ~6x for several 100M atom test cases 

• Graphical representation optimizations: 

– Reduce host-GPU bandwidth for displayed geometry 

– Optimized graphical representation generation routines 

for large atom counts, sparse selections 

 

 

116M atom BAR domain test case:           
200,000 selected atoms,            

stereo trajectory animation 70 FPS, 
static scene in stereo 116 FPS  
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Improving Performance for Large Datasets 

• As the performance of GPUs has continued to increase, formerly 

“insignificant” CPU routines are becoming bottlenecks  

– A key feature of VMD is the ability to perform visualization and analysis 

operations on arbitrary user-selected subsets of the molecular structure 

– CPU-side atom selection traversal performance has begun to be a potential 

bottleneck when working with large structures of tens of millions of atoms 

– Both OpenGL rendering and CUDA analysis kernels (currently) depend on the 

CPU to gather selected atom data into buffers that are sent to the GPU  

– Hand-coded SSE/AVX optimizations have now improved the performance of 

these CPU preprocessing steps by up to 6x, keeping the CPU “out of the way” 

 

20M atoms:  

membrane patch and solvent 
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Improving Performance for Large Datasets: 

Make Key Data Structures GPU-Resident  
• Eliminating the dependency on the host CPU to traverse, collect, 

and pack atom data will enable much higher GPU performance 

• Long-term, best performance will be obtained by storing all 

molecule data locally in on-board GPU memory 

– GPU needs enough memory to store both molecular information, as well as 

the generated vertex arrays and texture maps used for rendering 

– With sufficient memory, only per-timestep time-varying data will have to 

copied into the GPU on-the-fly, and most other data can remain GPU-resident 

– Today’s GPUs have insufficient memory for very large structures, where the 

resulting performance increases would have the greatest impact  

– Soon we should begin to see GPUs with 16GB of on-board memory – enough 

to keep all of the static molecular structure data on the GPU full-time 

• Once the full molecular data is GPU-resident, CUDA kernels can 

directly incorporate atom selection traversal for themselves 

• CUDA Dynamic Parallelism will make more GPUs self sufficient 
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Ribosome w/ solvent 

3M atoms 

3 frames/sec w/ HD 

77 frames/sec w/ SSDs 

Membrane patch w/ solvent 

20M atoms 

0.4 frames/sec w/ HD 

10 frames/sec w/ SSDs 

VMD Out-of-Core Trajectory I/O Performance:  

SSD Trajectory Format, PCIe3 8-SSD RAID 

New SSD Trajectory File Format 2x Faster vs. Existing Formats 

VMD I/O rate ~2.7 GB/sec w/ 8 SSDs in a single PCIe3 RAID0 
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Challenges for High Throughput 

Trajectory Visualization and Analysis 

• It is not currently possible to fully exploit full I/O 

bandwidths when streaming data from SSD arrays 

(>4GB/sec) to GPU global memory due to copies 

• Need to eliminated copies from disk controllers to 

host memory – bypass host entirely and perform 

zero-copy DMA operations straight from disk 

controllers to GPU global memory 

• Goal: GPUs directly pull in pages from storage 

systems bypassing host memory entirely 
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VMD for Demanding Analysis Tasks 

Parallel VMD Analysis w/ MPI 

• Analyze trajectory frames, 
structures, or sequences in 
parallel on clusters and 
supercomputers: 

– Compute time-averaged electrostatic 
fields, MDFF quality-of-fit, etc. 

– Parallel rendering, movie making 

• Addresses computing 
requirements beyond desktop 

• User-defined parallel reduction 
operations, data types 

• Dynamic load balancing: 

– Tested with up to 15,360 CPU cores 

• Supports GPU-accelerated 
clusters and supercomputers 

VMD 

VMD 

VMD 

Sequence/Structure Data,  

Trajectory Frames, etc… 

Gathered Results 

Data-Parallel 

Analysis in 
VMD 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

Time-Averaged Electrostatics Analysis 

on Energy-Efficient GPU Cluster 
• 1.5 hour job (CPUs) reduced to 

3 min (CPUs+GPU) 

• Electrostatics of thousands of 
trajectory frames averaged  

• Per-node power consumption on 
NCSA “AC” GPU cluster: 

– CPUs-only: 299 watts 

– CPUs+GPUs: 742 watts 

• GPU Speedup: 25.5x 

• Power efficiency gain: 10.5x 

Quantifying the Impact of GPUs on Performance and Energy 
Efficiency in HPC Clusters. J. Enos, C. Steffen, J. Fullop, M. 

Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J. Phillips.  
The Work in Progress in Green Computing,  pp. 317-324, 2010. 
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NCSA Blue Waters Early Science System 

Cray XK6 nodes w/ NVIDIA Tesla X2090 
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Time-Averaged Electrostatics Analysis on  

NCSA Blue Waters 

Preliminary performance for VMD time-averaged electrostatics w/ Multilevel 
Summation Method on the NCSA Blue Waters Early Science System 

NCSA Blue Waters Node Type Seconds per trajectory 

frame for one compute 

node 

Cray XE6 Compute Node: 

32 CPU cores (2xAMD 6200 CPUs) 

9.33 

Cray XK6 GPU-accelerated Compute Node: 

16 CPU cores + NVIDIA X2090 (Fermi) GPU 

2.25 

Speedup for GPU XK6 nodes vs. CPU XE6 nodes GPU nodes are 4.15x 

faster overall 

Early tests on XK7 nodes indicate MSM is becoming 

CPU-bound with the Kepler K20X GPU 

Performance is not much faster (yet) than Fermi X2090 

May need to move spatial hashing and other algorithms 

onto the GPU. 

In progress…. 
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Early Experiences with Kepler 
Preliminary Observations 

• Arithmetic is cheap, memory references are costly 
(trend is certain to continue & intensify…) 

• Different performance ratios for registers, shared mem, 
and various floating point operations vs. Fermi   

• Kepler GK104 (e.g. GeForce 680) brings improved 
performance for some special functions vs. Fermi: 

CUDA Kernel Dominant 

Arithmetic 

Operations 

Kepler (GeForce 680) 

Speedup vs. 

Fermi (Quadro 7000) 

Direct Coulomb summation rsqrtf() 2.4x 

Molecular orbital grid evaluation expf(), exp2f(), 

Multiply-Add 

1.7x 
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Molecular Surface Visualization 

Poliovirus 

• Large biomolecular 

complexes are difficult to 

interpret with atomic detail 

graphical representations 

• Even secondary structure 

representations become 

cluttered 

• Surface representations are 

easier to use when greater 

abstraction is desired, but are 

computationally costly 

• Most surface display methods 

incapable of animating 

dynamics of large structures 

w/ millions of particles 
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• Displays continuum of structural detail: 

– All-atom models 

– Coarse-grained models 

– Cellular scale models 

– Multi-scale models: All-atom + CG,  Brownian + Whole Cell 

– Smoothly variable between full detail, and reduced resolution 

representations of very large complexes 

VMD “QuickSurf” Representation 

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and 
Particle System Trajectories.   

M. Krone, J. E. Stone, T. Ertl, K. Schulten. EuroVis Short Papers, pp. 67-71, 2012 
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• Uses multi-core CPUs and GPU acceleration to enable smooth 

real-time animation of MD trajectories  

• Linear-time algorithm, scales to millions of particles, as limited 

by memory capacity 

VMD “QuickSurf” Representation 

Satellite Tobacco Mosaic Virus Lattice Cell Simulations 
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VMD “QuickSurf” Representation 

All-atom HIV capsid simulations 
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Discretized lattice models derived 
from continuous model shown in 
VMD QuickSurf representation 

Continuous particle 
based model –  often 70 
to 300 million particles 

Lattice Microbes: High‐performance stochastic simulation method for the 
reaction‐diffusion master equation 

E. Roberts, J. E. Stone, and Z. Luthey‐Schulten. 
J. Computational Chemistry 34 (3), 245-255, 2013. 

QuickSurf Representation of  

Lattice Cell Models 
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QuickSurf Algorithm Overview 
• Build spatial acceleration 

data structures, optimize 

data for GPU 

• Compute 3-D density map, 

3-D volumetric texture map: 

 

 

• Extract isosurface for a 

user-defined density value 

3-D density map lattice, 
spatial acceleration grid, 

and extracted surface 
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QuickSurf Particle Sorting, Bead 

Generation, Spatial Hashing 
• Particles sorted into spatial acceleration grid: 

– Selected atoms or residue “beads” converted lattice 

coordinate system 

– Each particle/bead assigned cell index, sorted 

w/NVIDIA Thrust template library 

• Complication: 

– Thrust allocates GPU mem. on-demand, no recourse 

if insufficient memory, have to re-gen QuickSurf data 

structures if caught by surprise! 

• Workaround: 

– Pre-allocate guesstimate workspace for Thrust 

– Free the Thrust workspace right before use 

– Newest Thrust allows user-defined allocator code…  

Coarse resolution 
spatial acceleration grid 
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Spatial Hashing Algorithm Steps/Kernels 

1) Compute bin index for each atom, 
store to memory w/ atom index 

QuickSurf uniform 
grid spatial 

subdivision data 
structure 

2) Sort list of  bin and atom index tuples 
(1) by bin index (thrust kernel) 

3) Count atoms in each bin (2) using a 
parallel prefix sum, aka scan, 
compute the destination index for each 
atom, store per-bin starting index and 
atom count (thrust kernel) 

4) Write atoms to the output indices 
computed in (3), and we have 
completed the data structure 
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QuickSurf and Limited GPU Global Memory 
• High resolution molecular surfaces require a fine lattice spacing 

• Memory use grows cubically with decreased lattice spacing 

• Not typically possible to compute a surface in a single pass, so we 

loop over sub-volume “chunks” until done… 

• Chunks pre-allocated and sized to GPU global mem capacity to 

prevent unexpected memory allocation failure while animating… 

• Complication: 

– Thrust allocates GPU mem. on-demand, no recourse if insufficient memory, 

have to re-gen QuickSurf data structures if caught by surprise! 

• Workaround: 

– Pre-allocate guesstimate workspace for Thrust 

– Free the Thrust workspace right before use 

– Newest Thrust allows user-defined allocator code…  
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Padding optimizes global 
memory performance, 
guaranteeing coalesced 
global memory accesses Grid of thread blocks 

Small 8x8 thread 

blocks afford large  

per-thread register 

count, shared 

memory 

              
QuickSurf 3-D density map 

decomposes into thinner 3-D 
slabs/slices (CUDA grids) 

… 0,0 0,1 

1,1 

… … 

… 

… 

Inactive threads, 
region of 
discarded 
output 

Each thread 

computes 

one or more 

density map 

lattice points 

Threads 
producing 
results that 
are used 1,0 

…  

Chunk 2 

Chunk 1 

Chunk 0 

Large volume 

computed in 

multiple passes, or 

multiple GPUs 

QuickSurf  Density Parallel Decomposition 
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QuickSurf Density Map Algorithm 

• Spatial acceleration grid cells are 

sized to match the cutoff radius for  

the exponential, beyond which density 

contributions are negligible 

• Density map lattice points computed 

by summing density contributions 

from particles in 3x3x3 grid of 

neighboring spatial acceleration cells 

• Volumetric texture map is computed 

by summing particle colors 

normalized by their individual density 

contribution 

3-D density map 
lattice point and 
the neighboring 

spatial acceleration 
cells it references 
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QuickSurf Density Map 

 Kernel Optimizations 

• Compute reciprocals, prefactors, other math on the host 

CPU prior to kernel launch 

• Use of intN and floatN vector types in CUDA kernels 

for improved global memory bandwidth 

• Thread coarsening: one thread computes multiple 

output densities and colors 

• Input data and register tiling: share blocks of input, 

partial distances in regs shared among multiple outputs 

• Global memory (L1 cache) broadcasts: all threads in 

the block traverse the same atom/particle at the same 

time  
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QuickSurf Density Map Kernel Snippet… 
for (zab=zabmin; zab<=zabmax; zab++) { 

    for (yab=yabmin; yab<=yabmax; yab++) { 

      for (xab=xabmin; xab<=xabmax; xab++) { 

        int abcellidx = zab * acplanesz + yab * acncells.x + xab; 

        uint2 atomstartend = cellStartEnd[abcellidx]; 

        if (atomstartend.x != GRID_CELL_EMPTY) { 

          for (unsigned int atomid=atomstartend.x; atomid<atomstartend.y; atomid++) { 

            float4 atom = sorted_xyzr[atomid]; 

            float dx = coorx - atom.x;            float dy = coory - atom.y;         float dz = coorz - atom.z; 

            float dxy2 = dx*dx + dy*dy; 

            float r21 = (dxy2 + dz*dz) * atom.w; 

            densityval1 += exp2f(r21); 

             /// Loop unrolling and register tiling benefits begin here…… 

            float dz2 = dz + gridspacing; 

            float r22 = (dxy2 + dz2*dz2) * atom.w; 

            densityval2 += exp2f(r22); 

            /// More loop unrolling …. 
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QuickSurf Marching Cubes 

Isosurface Extraction 
• Isosurface is extracted from each density map “chunk”, and 

either copied back to the host, or rendered directly out of 

GPU global memory via CUDA/OpenGL interop 

• All MC memory buffers are pre-allocated to prevent 

significant overhead when animating a simulation trajectory 

              
QuickSurf 3-D density map 

decomposes into thinner 3-D 
slabs/slices (CUDA grids) 

…  

Chunk 2 

Chunk 1 

Chunk 0 

Large volume 

computed in 

multiple passes 
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Brief Marching Cubes Isosurface 

Extraction Overview 
• Given a 3-D volume of scalar density values and a requested 

surface density value, marching cubes computes vertices and 

triangles that compose the requested surface triangle mesh  

• Each MC “cell” (a cube with 8 density values at its vertices) 

produces a variable number of output vertices depending on how 

many edges of the cell contain the requested isovalue… 

• Use scan() to compute the output indices so that each worker 

thread has conflict-free output of vertices/triangles 
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Brief Marching Cubes Isosurface 

Extraction Overview 
• Once the output vertices have been computed and stored, we 

compute surface normals and colors for each of the vertices 

• Although the separate normals+colors pass reads the density map 

again, molecular surfaces tend to generate a small percentage of 

MC cells containing triangles, we avoid wasting interpolation work 

• We use CUDA tex3D() hardware 3-D texture mapping: 

– Costs double the texture memory and a one copy from GPU global memory 

to the target texture map with cudaMemcpy3D() 

– Still roughly 2x faster than doing color interpolation without the texturing 

hardware, at least on GT200 and Fermi hardware 

– Kepler has new texture cache memory path that may make it feasible to do 

our own color interpolation and avoid the use of extra 3-D texture memory 

and associated copy, with acceptable performance 
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QuickSurf Marching Cubes 

Isosurface Extraction 
• Our optimized MC implementation computes per-vertex 

surface normals, colors, and outperforms the NVIDIA SDK 

sample by a fair margin on Fermi GPUs 

• Complications: 

– Even on a 6GB Quadro 7000, GPU global memory is under great 

strain when working with large molecular complexes, e.g. viruses 

– Marching cubes involves a parallel prefix sum (scan) to compute 

target indices for writing resulting vertices 

– We use Thrust for scan, has the same memory allocation issue 

mentioned earlier for the sort, so we use the same workaround 

– The number of output vertices can be huge, but we rarely have 

sufficient GPU memory for this – we use a fixed size vertex output 

buffer and hope our heuristics don’t fail us 
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QuickSurf Performance 

GeForce GTX 580 
Molecular 

system 

Atoms Resolution Tsort Tdensity TMC 

 

# vertices FPS 

MscL 111,016 1.0Å 0.005 0.023 0.003 0.7 M 28 

STMV capsid 147,976 1.0Å 0.007 0.048 0.009 2.4 M 13.2 

Poliovirus 

capsid 

754,200 1.0Å 0.01 0.18 0.05 9.2 M 3.5 

STMV w/ water 955,225 1.0Å 0.008 0.189 0.012 2.3 M 4.2 

Membrane 2.37 M 2.0Å 0.03 0.17 0.016 5.9 M 3.9 

Chromatophore 9.62 M 2.0Å 0.16 0.023 0.06 11.5 M 3.4 

Membrane w/ 

water 

22.77 M 4.0Å 

 

4.4 0.68 0.01 1.9 M 0.18 

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and 
Particle System Trajectories.   

M. Krone, J. E. Stone, T. Ertl, K. Schulten. EuroVis Short Papers, pp. 67-71, 2012 
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Extensions and Analysis Uses for QuickSurf 

Triangle Mesh 
• Curved PN triangles: 

– We have performed tests with post-processing the resulting triangle 

mesh and using curved PN triangles to generate smooth surfaces 

with a larger grid spacing, for increased performance 

– Initial results demonstrate some potential, but there can be 

pathological cases where MC generates long skinny triangles, 

causing unsightly surface creases 

• Analysis uses (beyond visualization): 

– Minor modifications to the density map algorithm allow rapid 

computation of solvent accessible surface area by summing the 

areas in the resulting triangle mesh 

– Modifications to the density map algorithm will allow it to be used 

for MDFF (molecular dynamics flexible fitting) 

– Surface triangle mesh can be used as the input for computing the 

electrostatic potential field for mesh-based algorithms 
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Challenge: Support Interactive QuickSurf for 

Large Structures on Mid-Range GPUs 
• Structures such as HIV 

initially needed large (6GB) 

GPU memory to generate 

fully-detailed surface 

renderings 

• Goals and approach:  

– Avoid slow CPU-fallback! 

– Incrementally change 

algorithm phases to use more 

compact data types, while 

maintaining performance 

– Specialize code for different 

performance/memory 

capacity cases 
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Improving QuickSurf Memory Efficiency 

• Both host and GPU memory capacity limitations are a 

significant concern when rendering surfaces for virus 

structures such as HIV or for large cellular models which 

can contain hundreds of millions of particles 

• The original QuickSurf implementation used single-

precision floating point for output vertex arrays and 

textures 

• Judicious use of reduced-precision numerical 

representations, cut the overall memory footprint of the 

entire QuickSurf algorithm to half of the original 

– Data type changes made throughout the entire chain from density 

map computation through all stages of Marching Cubes 
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Supporting Multiple Data Types for  

QuickSurf Density Maps 

and Marching Cubes Vertex Arrays 

• The major algorithm components of QuickSurf are now 

used for many other purposes: 

– Gaussian density map algorithm now used for MDFF Cryo EM 

density map fitting methods in addition to QuickSurf 

– Marching Cubes routines also used for Quantum Chemistry 

visualizations of molecular orbitals  

• Rather than simply changing QuickSurf to use a particular 

internal numerical representation, it is desirable to instead 

use CUDA C++ templates to make type-generic versions 

of the key objects, kernels, and output vertex arrays 

• Accuracy-sensitive algorithms use high-precision data 

types, performance and memory capacity sensitive cases 

use quantized or reduced precision approaches  
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Minimizing the Impact of Generality on  

QuickSurf Code Complexity 

• A critical factor in the simplicity of supporting multiple 

QuickSurf data types arises from the so-called “gather” 

oriented algorithm we employ 

– Internally, all in-register arithmetic is single-precision 

– Data conversions to/from compressed or reduced precision data 

types are performed on-the-fly as needed 

• Small inlined type conversion routines are defined for each 

of the cases we want to support 

• Key QuickSurf kernels are genericized using C++ template 

syntax, and the compiler “connects the dots” to 

automatically generate type-specific kernels as needed  
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Example Templated  

Density Map Kernel 
template<class DENSITY, class VOLTEX> 

__global__ static void 

gaussdensity_fast_tex_norm(int natoms, 

                                              const float4 * RESTRICT sorted_xyzr, 

                                              const float4 * RESTRICT sorted_color, 

                                              int3 numvoxels, 

                                              int3 acncells, 

                                             float acgridspacing, 

                                             float invacgridspacing, 

                                             const uint2 * RESTRICT cellStartEnd, 

                                             float gridspacing, unsigned int z, 

                                             DENSITY * RESTRICT densitygrid, 

                                             VOLTEX * RESTRICT voltexmap, 

                                            float invisovalue) { 
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Example Templated  

Density Map Kernel 
template<class DENSITY, class VOLTEX> 

__global__ static void 

gaussdensity_fast_tex_norm( …  ) { 

  

  … Triple-nested and unrolled inner loops here … 

 

  DENSITY densityout; 

  VOLTEX texout; 

  convert_density(densityout, densityval1); 

  densitygrid[outaddr          ] = densityout; 

  convert_color(texout, densitycol1); 

  voltexmap[outaddr          ] = texout; 
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Net Result of QuickSurf Memory 

Efficiency Optimizations 

• Halved overall GPU memory use 

• Achieved 1.5x to 2x performance gain: 

– The “gather” density map algorithm keeps type 

conversion operations out of the innermost loop 

– Density map global memory writes reduced to half 

– Multiple stages of Marching Cubes operate on smaller 

input and output data types 

– Same code path supports multiple precisions 

• Users now get full GPU-accelerated QuickSurf in 

many cases that previously triggered CPU-

fallback, all platforms (laptop/desk/super) benefit! 
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High Resolution HIV Surface 
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Molecular Orbitals 

• Visualization of MOs aids in 

understanding the chemistry 

of molecular system 

• MO spatial distribution is 

correlated with probability 

density for an electron(s) 

• Algorithms for computing 

other molecular properties are 

similar, and can share code 

High Performance Computation and Interactive Display of Molecular 
Orbitals on GPUs and Multi-core CPUs.                                              

J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten,   
2nd Workshop on General-Purpose Computation on Graphics 
Pricessing Units (GPGPU-2), ACM International Conference 

Proceeding Series, volume 383, pp. 9-18, 2009. 
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Computing Molecular Orbitals 

• Calculation of high 
resolution MO grids can 
require tens to hundreds of 
seconds in existing tools 

• Existing tools cache MO 
grids as much as possible 
to avoid recomputation: 

– Doesn’t eliminate the wait 
for initial calculation, 
hampers interactivity 

– Cached grids consume 
100x-1000x more memory 
than MO coefficients 

C60 
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Animating Molecular Orbitals 
• Animation of (classical 

mechanics) molecular 

dynamics trajectories 

provides insight into 

simulation results 

• To do the same for QM or 

QM/MM simulations one 

must compute MOs at ~10 

FPS or more 

• >100x speedup (GPU) over 

existing tools now makes 

this possible! C60 
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Molecular Orbital Computation and Display Process 

Read QM simulation log file, trajectory 

Compute 3-D grid of MO wavefunction amplitudes 

Most performance-demanding step, run on GPU… 

Extract isosurface mesh from 3-D MO grid  

Apply user coloring/texturing  

and render the resulting surface  

Preprocess MO coefficient data 

eliminate duplicates, sort by type, etc… 

For current frame and MO index,  

retrieve MO wavefunction coefficients   

One-time 
initialization 

For each trj frame, for   
each MO shown 

Initialize Pool of GPU  

Worker Threads 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

Padding optimizes global 
memory performance, 

guaranteeing coalesced 
global memory accesses Grid of thread blocks 

Small 8x8 thread 
blocks afford large  

per-thread register 
count, shared 

memory 

              

MO 3-D lattice 
decomposes into 2-D 
slices (CUDA grids) 

… 0,0 0,1 

1,1 

… … 

… 

… 

Threads 
producing 

results that are 
discarded 

Each thread 
computes 
one MO 

lattice point. 

Threads 
producing 
results that 

are used 1,0 

…  

GPU 2 

GPU 1 

GPU 0 

Lattice can be 
computed using 
multiple GPUs 
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Padding optimizes global 
memory performance, 
guaranteeing coalesced 
global memory accesses Grid of thread blocks 

Small 8x8 thread 

blocks afford large  

per-thread register 

count, shared 

memory 

              

MO 3-D lattice 
decomposes into 2-D 
slices (CUDA grids) 

… 0,0 0,1 

1,1 

… … 

… 

… 

Threads 
producing 
results that are 
discarded 

Each thread 

computes 

one MO 

lattice point. 

Threads 
producing 
results that 
are used 1,0 

…  

GPU 2 

GPU 1 

GPU 0 

Lattice can be 

computed using 

multiple GPUs 

MO GPU Parallel Decomposition 
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MO GPU Kernel Snippet: 
Contracted GTO Loop, Use of Constant Memory 

[… outer loop over atoms …] 

    float dist2 = xdist2 + ydist2 + zdist2; 

    // Loop over the shells belonging to this atom (or basis function) 

    for (shell=0; shell < maxshell; shell++) { 

      float contracted_gto = 0.0f; 

      // Loop over the Gaussian primitives of this contracted basis function to build the atomic 

orbital 

      int maxprim = const_num_prim_per_shell[shell_counter]; 

      int shelltype = const_shell_types[shell_counter]; 

      for (prim=0; prim < maxprim;  prim++) { 

        float exponent         = const_basis_array[prim_counter       ]; 

        float contract_coeff = const_basis_array[prim_counter + 1]; 

        contracted_gto += contract_coeff * __expf(-exponent*dist2); 

        prim_counter += 2; 

      } 

[… continue on to angular momenta loop …] 

Constant memory: 
nearly register-
speed when array 
elements accessed 
in unison by all 
threads…. 
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MO GPU Kernel Snippet: 
Unrolled Angular Momenta Loop 

      /* multiply with the appropriate wavefunction coefficient */ 

      float tmpshell=0; 

      switch (shelltype) { 

        case S_SHELL: 

          value += const_wave_f[ifunc++] * contracted_gto; 

          break; 

[… P_SHELL case …] 

        case D_SHELL: 

          tmpshell += const_wave_f[ifunc++] * xdist2; 

          tmpshell += const_wave_f[ifunc++] * xdist * ydist; 

          tmpshell += const_wave_f[ifunc++] * ydist2; 

          tmpshell += const_wave_f[ifunc++] * xdist * zdist; 

          tmpshell += const_wave_f[ifunc++] * ydist * zdist; 

          tmpshell += const_wave_f[ifunc++] * zdist2; 

          value += tmpshell * contracted_gto; 

          break; 

[... Other cases: F_SHELL, G_SHELL, etc …] 

} // end switch 

Loop unrolling: 

•Saves registers 
(important for GPUs!) 

•Reduces loop control 
overhead 

•Increases arithmetic 
intensity 
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Preprocessing of Atoms, Basis Set, and  

Wavefunction Coefficients 

• Must make effective use of high bandwidth, low-
latency GPU on-chip shared memory, or L1 cache: 

– Overall storage requirement reduced by eliminating 
duplicate basis set coefficients 

– Sorting atoms by element type allows re-use of basis set 

coefficients for subsequent atoms of identical type 

• Padding, alignment of arrays guarantees coalesced 

GPU global memory accesses 
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GPU Traversal of Atom Type, Basis Set, 

 Shell Type, and Wavefunction Coefficients 

• Loop iterations always access same or consecutive 
array elements for all threads in a thread block: 

– Yields good constant memory and L1 cache performance 

– Increases shared memory tile reuse 

Monotonically increasing memory references 

Strictly sequential memory references 

Different at each 
timestep, and for   

each MO 

Constant for all MOs, 
all timesteps 
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Use of GPU On-chip Memory 
• If total data less than 64 kB, use only const mem: 

– Broadcasts data to all threads, no global memory accesses! 

• For large data, shared memory used as a program-managed 
cache, coefficients loaded on-demand: 

– Tiles sized large enough to service entire inner loop runs, broadcast to all 
64 threads in a block 

– Complications: nested loops, multiple arrays, varying length 

– Key to performance is to locate tile loading checks outside of the two 
performance-critical inner loops 

– Only 27% slower than hardware caching provided by constant memory 
(on GT200) 

• Fermi/Kepler GPUs have larger on-chip shared memory, L1/L2 
caches, greatly reducing control overhead 
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MO coefficient array in GPU global memory. 

Tiles are referenced in consecutive order. 

Array tile loaded in GPU shared memory.  Tile size is a power-of-two, a 

multiple of coalescing size, and allows simple indexing in inner loops. 

Global memory array indices are merely offset to reference an MO 

coefficient within a tile loaded in fast on-chip shared memory. 

64-byte memory 
coalescing block 

boundaries 

Surrounding data, 
unreferenced by 

next batch of loop 
iterations 

Full tile 
padding 
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VMD MO GPU Kernel Snippet: 
Loading Tiles Into Shared Memory On-Demand  

[… outer loop over atoms …] 

      if ((prim_counter + (maxprim<<1)) >= SHAREDSIZE) { 

        prim_counter += sblock_prim_counter; 

        sblock_prim_counter = prim_counter & MEMCOAMASK; 

        s_basis_array[sidx          ] = basis_array[sblock_prim_counter + sidx          ]; 

        s_basis_array[sidx +   64] = basis_array[sblock_prim_counter + sidx +   64]; 

        s_basis_array[sidx + 128] = basis_array[sblock_prim_counter + sidx + 128]; 

        s_basis_array[sidx + 192] = basis_array[sblock_prim_counter + sidx + 192]; 

        prim_counter -= sblock_prim_counter; 

        __syncthreads(); 

      }  

      for (prim=0; prim < maxprim;  prim++) { 

        float exponent         = s_basis_array[prim_counter       ]; 

        float contract_coeff = s_basis_array[prim_counter + 1]; 

        contracted_gto += contract_coeff * __expf(-exponent*dist2); 

        prim_counter += 2; 

      } 

[… continue on to angular momenta loop …] 

Shared memory tiles: 

•Tiles are checked 
and loaded, if 
necessary, 
immediately prior to 
entering key 
arithmetic loops 

•Adds additional 
control overhead to 
loops, even with 
optimized 
implementation 
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New GPUs Bring Opportunities for Higher 

Performance and Easier Programming 

• NVIDIA’s “Fermi” and “Kepler” GPUs bring: 

– Greatly increased peak single- and double-precision 

arithmetic rates 

– Moderately increased global memory bandwidth 

– Increased capacity on-chip memory partitioned into 

shared memory and an L1 cache for global memory 

– Concurrent kernel execution 

– Bidirectional asynchronous host-device I/O 

– ECC memory, faster atomic ops, many others… 
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VMD MO GPU Kernel Snippet: 
Fermi/Kepler kernel based on L1 cache  

[… outer loop over atoms …] 

  // loop over the shells/basis funcs belonging to this atom 

  for (shell=0; shell < maxshell; shell++) { 

    float contracted_gto = 0.0f;  

    int maxprim   = shellinfo[(shell_counter<<4)      ]; 

    int shell_type = shellinfo[(shell_counter<<4) + 1]; 

    for (prim=0; prim < maxprim; prim++) { 

      float exponent         = basis_array[prim_counter      ]; 

      float contract_coeff = basis_array[prim_counter + 1]; 

      contracted_gto += contract_coeff * __expf(-

exponent*dist2);  

      prim_counter += 2; 

   }  

   [… continue on to angular momenta loop …] 

L1 cache: 

•Simplifies code! 

•Reduces control 
overhead 

•Gracefully handles 
arbitrary-sized 
problems 

•Matches performance 
of constant memory on 
Fermi 
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MO Kernel for One Grid Point  (Naive C) 

Loop over atoms 

Loop over shells 

Loop over primitives: 
largest component of 
runtime, due to expf() 

Loop over angular 
momenta 

(unrolled in real code) 

…  

for (at=0; at<numatoms; at++) { 

    int prim_counter = atom_basis[at]; 

    calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv); 

    for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) { 

        int shell_type = shell_symmetry[shell_counter]; 

        for (prim=0; prim < num_prim_per_shell[shell_counter];  prim++) { 

            float exponent         = basis_array[prim_counter       ]; 

            float contract_coeff = basis_array[prim_counter + 1]; 

            contracted_gto += contract_coeff * expf(-exponent*dist2); 

            prim_counter += 2; 

        } 

        for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) { 

           int imax = shell_type - j;  

           for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv) 

              tmpshell += wave_f[ifunc++] * xdp * ydp * zdp; 

        } 

        value += tmpshell * contracted_gto; 

        shell_counter++; 

   }  

} ….. 
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Use of GPU On-chip Memory 

• If total data less than 64 kB, use only const mem: 

– Broadcasts data to all threads, no global memory accesses! 

• For large data, shared memory used as a program-
managed cache, coefficients loaded on-demand: 

– Tile data in shared mem is broadcast to 64 threads in a block 

– Nested loops traverse multiple coefficient arrays of varying 
length, complicates things significantly… 

– Key to performance is to locate tile loading checks outside of 
the two performance-critical inner loops 

– Tiles sized large enough to service entire inner loop runs 

– Only 27% slower than hardware caching provided by 
constant memory (GT200) 
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Performance Evaluation: 
Molekel, MacMolPlt, and VMD 

 Sun Ultra 24: Intel Q6600, NVIDIA GTX 280 

C60-A C60-B Thr-A Thr-B Kr-A Kr-B 

Atoms 60 60 17 17 1 1 

Basis funcs (unique) 300 (5) 900 (15) 49 (16) 170 (59) 19 (19) 84 (84) 

Kernel Cores 

GPUs 
Speedup vs. Molekel on 1 CPU core 

Molekel 1* 1.0 1.0 1.0 1.0 1.0 1.0 

MacMolPlt 4 2.4 2.6 2.1 2.4 4.3 4.5 

VMD GCC-cephes 4 3.2 4.0 3.0 3.5 4.3 6.5 

VMD ICC-SSE-cephes 4 16.8 17.2 13.9 12.6 17.3 21.5 

VMD ICC-SSE-approx** 4 59.3 53.4 50.4 49.2 54.8 69.8 

VMD CUDA-const-cache 1 552.3 533.5 355.9 421.3 193.1 571.6 
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VMD MO Performance Results for C60 
Sun Ultra 24: Intel Q6600, NVIDIA GTX 280 

Kernel Cores/GPUs Runtime (s) Speedup 

CPU ICC-SSE 1 46.58 1.00 

CPU ICC-SSE 4 11.74 3.97 

CPU ICC-SSE-approx** 4 3.76 12.4 

CUDA-tiled-shared 1 0.46 100. 

CUDA-const-cache 1 0.37 126. 

CUDA-const-cache-JIT* 1 0.27 173. 

(JIT 40% faster) 

C60 basis set 6-31Gd.  We used an unusually-high resolution MO grid for 
accurate timings.  A more typical calculation has 1/8th the grid points. 

* Runtime-generated JIT kernel compiled using batch mode CUDA tools 

**Reduced-accuracy approximation of expf(),                                         
cannot be used for zero-valued MO isosurfaces 
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VMD Single-GPU Molecular Orbital  

Performance Results for C60 on Fermi 

Kernel Cores/GPUs Runtime (s) Speedup 

Xeon 5550 ICC-SSE 1 30.64 1.0 

Xeon 5550 ICC-SSE 8 4.13 7.4 

CUDA shared mem 1 0.37 83 

CUDA L1-cache (16KB) 1 0.27 113 

CUDA const-cache 1 0.26 117 

CUDA const-cache, zero-copy 1 0.25 122 

Intel X5550 CPU, GeForce GTX 480 GPU 

Fermi GPUs have caches: match perf. of hand-coded 
shared memory kernels. Zero-copy memory transfers 
improve overlap of computation and host-GPU I/Os. 
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Preliminary Single-GPU Molecular Orbital  

Performance Results for C60 on Kepler 

Kernel Cores/GPUs Runtime (s) Speedup 

Xeon 5550 ICC-SSE 1 30.64 1.0 

Xeon 5550 ICC-SSE 8 4.13 7.4 

CUDA shared mem 1 0.264 116 

CUDA L1-cache (16KB) 1 0.228 134 

CUDA const-cache 1 0.104 292 

CUDA const-cache, zero-copy 1 0.0938 326 

Intel X5550 CPU, GeForce GTX 680 GPU 

Kepler GK104 (GeForce 680) seems to strongly prefer the 
constant cache kernels vs. the others.   
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VMD Orbital Dynamics Proof of Concept 

One GPU can compute and animate this movie on-the-fly! 

CUDA const-cache kernel,     Sun Ultra 24, GeForce GTX 285  

GPU MO grid calc. 0.016 s 

CPU surface gen, 

volume gradient, and 

GPU rendering 

0.033 s 

Total runtime 0.049 s 

Frame rate 20 FPS 

With GPU speedups over 100x, previously insignificant CPU 
surface gen, gradient calc, and rendering are now 66% of runtime. 

Need GPU-accelerated surface gen next… 

threonine 
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Multi-GPU Load Balance 

• Many early CUDA codes 
assumed all GPUs were identical  

• Host machines may contain a 
diversity of GPUs of varying 
capability (discrete, IGP, etc) 

• Different GPU on-chip and global 
memory capacities may need 
different problem “tile” sizes 

• Static decomposition works 
poorly for non-uniform workload, 
or diverse GPUs 

GPU 1 

14 SMs 

GPU N 

30 SMs 
… 
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Padding optimizes global 
memory performance, 

guaranteeing coalesced 
global memory accesses Grid of thread blocks 

Small 8x8 thread 
blocks afford large  

per-thread register 
count, shared 

memory 

              

MO 3-D lattice 
decomposes into 2-D 
slices (CUDA grids) 

… 0,0 0,1 

1,1 

… … 

… 

… 

Threads 
producing 

results that are 
discarded 

Each thread 
computes 
one MO 

lattice point. 

Threads 
producing 
results that 

are used 1,0 

…  

GPU 2 

GPU 1 

GPU 0 

Lattice can be 
computed using 
multiple GPUs 
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Multi-GPU Dynamic Work Distribution 

// Each GPU worker thread loops over 

// subset of work items… 

while (!threadpool_next_tile(&parms, 

tilesize, &tile){ 

  // Process one work item… 

  // Launch one CUDA kernel for each 

  //   loop iteration taken… 

  // Shared iterator automatically  

  //   balances load on GPUs 

} 

GPU 1 GPU N 
… 

Dynamic work 
distribution 
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Example Multi-GPU Latencies 
4 C2050 GPUs, Intel Xeon 5550 

      6.3us     CUDA empty kernel (immediate return) 

      9.0us     Sleeping barrier primitive (non-spinning 

                    barrier that uses POSIX condition variables to prevent 

                    idle CPU consumption while workers wait at the barrier) 

    14.8us      pool wake, host fctn exec, sleep cycle (no CUDA) 

    30.6us      pool wake,     1x(tile fetch, simple CUDA kernel launch), sleep 

1817.0us      pool wake, 100x(tile fetch, simple CUDA kernel launch), sleep 
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Multi-GPU Runtime  

Error/Exception Handling 
• Competition for resources 

from other applications can 
cause runtime failures, e.g. 
GPU out of memory half way 
through an algorithm 

• Handle exceptions, e.g. 
convergence failure, NaN 
result, insufficient compute 
capability/features 

• Handle and/or reschedule 
failed tiles of work 

GPU 1 

SM 1.1 

128MB 

GPU N 

SM 2.0 

3072MB 

… 

Original 
Workload 

Retry Stack 
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VMD Multi-GPU Molecular Orbital  

Performance Results for C60 

Intel Q6600 CPU, 4x Tesla C1060 GPUs, 

Uses persistent thread pool to avoid GPU init overhead, 
dynamic scheduler distributes work to GPUs 

Kernel Cores/GPUs Runtime (s) Speedup Parallel 

Efficiency 

CPU-ICC-SSE 1 46.580 1.00 100% 

CPU-ICC-SSE 4 11.740 3.97 99% 

CUDA-const-cache 1 0.417 112 100% 

CUDA-const-cache 2 0.220 212 94% 

CUDA-const-cache 3 0.151 308 92% 

CUDA-const-cache 4 0.113 412 92% 
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VMD Multi-GPU Molecular Orbital  

Performance Results for C60 

Kernel Cores/GPUs Runtime (s) Speedup 

Intel X5550-SSE 1 30.64 1.0 

Intel X5550-SSE 8 4.13 7.4 

GeForce GTX 480 1 0.255 120 

GeForce GTX 480 2 0.136 225 

GeForce GTX 480 3 0.098 312 

GeForce GTX 480 4 0.081 378 

Intel X5550 CPU, 4x GeForce GTX 480 GPUs, 

Uses persistent thread pool to avoid GPU init overhead, 
dynamic scheduler distributes work to GPUs 
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Molecular Orbital Dynamic Scheduling 

Performance with Heterogeneous GPUs 

Kernel Cores/GPUs Runtime (s) Speedup 

Intel X5550-SSE 1 30.64 1.0 

Quadro 5800 1 0.384 79 

Tesla C2050 1 0.325 94 

GeForce GTX 480 1 0.255 120 

GeForce GTX 480 + 

Tesla C2050 + 

Quadro 5800 

3 0.114 268 

(91% of ideal perf) 

Dynamic load balancing enables mixture of GPU 
generations, SM counts, and clock rates to perform well. 
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MO Kernel Structure, Opportunity for JIT… 
Data-driven, but representative loop trip counts in (…) 

Loop over atoms (1 to ~200) {                   

Loop over electron shells for this atom type (1 to ~6) { 

Loop over primitive functions for this shell type (1 to ~6) { 

 

 

} 

Loop over angular momenta for this shell type (1 to ~15) {} 

} 

} 

Unpredictable (at compile-time, since data-driven ) but 
small loop trip counts result in significant loop overhead.  
Dynamic kernel generation and JIT compilation can 

unroll entirely, resulting in 40% speed boost 
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Molecular Orbital Computation and Display Process 
Dynamic Kernel Generation, Just-In-Time (JIT) C0mpilation 

Read QM simulation log file, trajectory 

Compute 3-D grid of MO wavefunction amplitudes 

using basis set-specific CUDA kernel 

Extract isosurface mesh from 3-D MO grid  

Render the resulting surface  

Preprocess MO coefficient data 

eliminate duplicates, sort by type, etc… 

For current frame and MO index,  

retrieve MO wavefunction coefficients   

One-time 
initialization 

Generate/compile basis set-specific CUDA kernel 

For each trj frame, for   
each MO shown 

Initialize Pool of GPU  

Worker Threads 
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   …..  

   contracted_gto = 1.832937 * expf(-7.868272*dist2); 

    contracted_gto += 1.405380 * expf(-1.881289*dist2); 

    contracted_gto += 0.701383 * expf(-0.544249*dist2); 

    // P_SHELL 

    tmpshell = const_wave_f[ifunc++] * xdist; 

    tmpshell += const_wave_f[ifunc++] * ydist; 

    tmpshell += const_wave_f[ifunc++] * zdist; 

    value += tmpshell * contracted_gto; 

 

    contracted_gto = 0.187618 * expf(-0.168714*dist2); 

    // S_SHELL 

    value += const_wave_f[ifunc++] * contracted_gto; 

 

    contracted_gto = 0.217969 * expf(-0.168714*dist2); 

    // P_SHELL 

    tmpshell = const_wave_f[ifunc++] * xdist; 

    tmpshell += const_wave_f[ifunc++] * ydist; 

    tmpshell += const_wave_f[ifunc++] * zdist; 

    value += tmpshell * contracted_gto; 

 

    contracted_gto = 3.858403 * expf(-0.800000*dist2); 

    // D_SHELL 

    tmpshell = const_wave_f[ifunc++] * xdist2; 

    tmpshell += const_wave_f[ifunc++] * ydist2; 

    tmpshell += const_wave_f[ifunc++] * zdist2; 

    tmpshell += const_wave_f[ifunc++] * xdist * ydist; 

    tmpshell += const_wave_f[ifunc++] * xdist * zdist; 

    tmpshell += const_wave_f[ifunc++] * ydist * zdist; 

    value += tmpshell * contracted_gto; 

  …..  

   // loop over the shells belonging to this atom (or basis function) 

    for (shell=0; shell < maxshell; shell++) { 

      float contracted_gto = 0.0f; 

 

      // Loop over the Gaussian primitives of this contracted 

      // basis function to build the atomic orbital 

      int maxprim = const_num_prim_per_shell[shell_counter]; 

      int shell_type = const_shell_symmetry[shell_counter]; 

      for (prim=0; prim < maxprim;  prim++) { 

        float exponent       = const_basis_array[prim_counter    ]; 

        float contract_coeff = const_basis_array[prim_counter + 1]; 

        contracted_gto += contract_coeff * exp2f(-exponent*dist2); 

        prim_counter += 2; 

      } 

 

      /* multiply with the appropriate wavefunction coefficient */ 

      float tmpshell=0; 

      switch (shell_type) { 

        case S_SHELL: 

          value += const_wave_f[ifunc++] * contracted_gto; 

          break; 

[…..] 

        case D_SHELL: 

          tmpshell += const_wave_f[ifunc++] * xdist2; 

          tmpshell += const_wave_f[ifunc++] * ydist2; 

          tmpshell += const_wave_f[ifunc++] * zdist2; 

          tmpshell += const_wave_f[ifunc++] * xdist * ydist; 

          tmpshell += const_wave_f[ifunc++] * xdist * zdist; 

          tmpshell += const_wave_f[ifunc++] * ydist * zdist; 

          value += tmpshell * contracted_gto; 

          break; 

General loop-based 
CUDA kernel 

Dynamically-generated 
CUDA kernel (JIT) 
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VMD MO JIT Performance Results for C60 
2.6GHz Intel X5550 vs. NVIDIA C2050 

Kernel Cores/GPUs Runtime (s) Speedup 

CPU ICC-SSE 1 30.64 1.0 

CPU ICC-SSE 8 4.13 7.4 

CUDA-JIT, Zero-copy 1 0.174 176 

C60 basis set 6-31Gd.  We used a high resolution MO grid for accurate 
timings.  A more typical calculation has 1/8th the grid points. 

JIT kernels eliminate overhead for low trip 
count for loops, replace dynamic table lookups 

with constants, and increase floating point 
arithmetic intensity 
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Experiments Porting VMD CUDA 

Kernels to OpenCL 

• Why mess with OpenCL? 

– OpenCL is very similar to CUDA, though a few years 
behind in terms of HPC features, aims to be the 
“OpenGL” of heterogeneous computing 

– As with CUDA, OpenCL provides a low-level language 
for writing high performance kernels, until compilers 
do a much better job of generating this kind of code 

– Potential to eliminate hand-coded SSE for CPU 
versions of compute intensive code, looks more like C 
and is easier for non-experts to read than hand-coded 
SSE or other vendor-specific instruction sets, intrinsics 
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Molecular Orbital Inner Loop, Hand-Coded SSE 

Hard to Read, Isn’t It?  (And this is the “pretty” version!) 
for (shell=0; shell < maxshell; shell++) { 

    __m128 Cgto = _mm_setzero_ps(); 

    for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) { 

        float exponent         = -basis_array[prim_counter      ]; 

        float contract_coeff =  basis_array[prim_counter + 1]; 

        __m128 expval = _mm_mul_ps(_mm_load_ps1(&exponent), dist2); 

        __m128 ctmp = _mm_mul_ps(_mm_load_ps1(&contract_coeff), exp_ps(expval)); 

        Cgto = _mm_add_ps(contracted_gto, ctmp); 

        prim_counter += 2; 

    } 

    __m128 tshell = _mm_setzero_ps(); 

    switch (shell_types[shell_counter]) { 

        case S_SHELL: 

            value = _mm_add_ps(value, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), Cgto));    break; 

        case P_SHELL: 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), xdist)); 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), ydist)); 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), zdist)); 

            value = _mm_add_ps(value, _mm_mul_ps(tshell, Cgto)); 

            break; 

Until now, writing SSE kernels for CPUs 
required assembly language, compiler 

intrinsics, various libraries, or a really smart 
autovectorizing compiler and lots of luck... 
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Molecular Orbital Inner Loop, OpenCL Vec4 

Ahhh, much easier to read!!! 
for (shell=0; shell < maxshell; shell++) { 

     float4 contracted_gto = 0.0f; 

     for (prim=0; prim < const_num_prim_per_shell[shell_counter];  prim++) { 

          float exponent          = const_basis_array[prim_counter      ]; 

          float contract_coeff = const_basis_array[prim_counter + 1]; 

          contracted_gto += contract_coeff * native_exp2(-exponent*dist2); 

          prim_counter += 2; 

     } 

     float4 tmpshell=0.0f; 

     switch (const_shell_symmetry[shell_counter]) { 

          case S_SHELL: 

              value += const_wave_f[ifunc++] * contracted_gto;       break; 

         case P_SHELL: 

              tmpshell += const_wave_f[ifunc++] * xdist; 

              tmpshell += const_wave_f[ifunc++] * ydist; 

              tmpshell += const_wave_f[ifunc++] * zdist;  

              value += tmpshell * contracted_gto; 

              break;    

OpenCL’s C-like kernel language 
is easy to read, even 4-way 
vectorized kernels can look 
similar to scalar CPU code. 

All 4-way vectors shown in green.  
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Apples to Oranges Performance Results: 

OpenCL Molecular Orbital Kernels 
Kernel Cores Runtime (s) Speedup 

Intel QX6700 CPU ICC-SSE (SSE intrinsics) 1 46.580 1.00 

Intel Core2 Duo CPU OpenCL scalar 2 43.342 1.07 

Intel Core2 Duo CPU OpenCL vec4 2 8.499 5.36 

Cell OpenCL vec4*** no __constant 16 6.075 7.67 

Radeon 4870 OpenCL scalar 10 2.108 22.1 

Radeon 4870 OpenCL vec4 10 1.016 45.8 

GeForce GTX 285 OpenCL vec4 30 0.364 127.9 

GeForce GTX 285 CUDA 2.1 scalar 30 0.361 129.0 

GeForce GTX 285 OpenCL scalar 30 0.335 139.0 

GeForce GTX 285 CUDA 2.0 scalar 30 0.327 142.4 

Minor varations in compiler quality can have a strong effect on “tight” kernels.  The two 
results shown for CUDA demonstrate performance variability with compiler revisions, and 
that with vendor effort, OpenCL has the potential to match the performance of other APIs. 
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