
Approaches to GPU computing

Manuel Ujaldon
Nvidia CUDA Fellow

Computer Architecture Department
University of Malaga (Spain)

Talk outline [40 slides]

1. Programming choices. [30]
1. CUDA libraries and tools. [10]
2. Targeting CUDA to other platforms. [5]
3. Accessing CUDA from other languages. [4]
4. Using directives: OpenACC. [11]

2. Examples: Six ways to implement SAXPY on GPUs. [9]
3. Summary. [1]

2

I. Programming choices

3

CUDA Parallel Computing Platform

4

GPUDirect SMX Dynamic
Parallelism

HyperQ

!"#$%$"&'(

“Drop-in”
Acceleration

)$*+$%,,"-+(
!%-+.%+&'(

/0&-122(
3"$&456&'(

Maximum Flexibility
Easily Accelerate

Apps

Nsight IDE

Linux, Mac and Windows

GPU Debugging and

Profiling

CUDA-GDB

debugger

NVIDIA Visual

Profiler

Enables compiling new languages to CUDA

platform, and CUDA languages to other

architectures

I. 1. CUDA Libraries and tools

5

Libraries: Easy, high-quality acceleration

Ease of use: Using libraries enables GPU acceleration
without in-depth knowledge of GPU programming.

"Drop-in": Many GPU-accelerated libraries follow
standard APIs, thus enabling accel. with minimal changes.

Quality: Libraries offer high-quality implementations of
functions encountered in a broad range of applications.

Performance: Nvidia libraries are tuned by experts.

6

Three steps to CUDA-accelerated applications

Step 1: Substitute library calls with equivalent CUDA
library calls.

 saxpy(...) --> cublasSaxpy (...)

Step 2: Manage data locality.
 With CUDA: cudaMalloc(), cudaMemcpy(), etc.

 With CUBLAS: cublasAlloc(), cublasSetVector(), etc.

Step 3: Rebuild and link the CUDA-accelerated library.
 nvcc myobj.o -l cublas

7

A linear algebra example

int N = 1 << 20;

// Perform SAXPY on 1M elements: y[]=a*x[]+y[]
saxpy(N, 2.0, x, y, 1);

8

A linear algebra example

int N = 1 << 20;

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]
cublasSaxpy(N, 2.0, d_x, d_y, 1);

9

Add "cublas" prefix and
use device variables

A linear algebra example

int N = 1 << 20;
cublasInit();

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]
cublasSaxpy(N, 2.0, d_x, d_y, 1);

cublasShutdown();
10

Initialize CUBLAS

Shut down CUBLAS

A linear algebra example

int N = 1 << 20;nt N = 1 << 20;
cublasInit();
cublasAlloc(N, sizeof(float), (void**)&d_x);
cublasAlloc(N, sizeof(float), (void**)&d_y);

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]
cublasSaxpy(N, 2.0, d_x, d_y, 1);

cublasFree(d_x);
cublasFree(x_y);

cublasShutdown();
11

Allocate device vectors

Deallocate device vectors

A linear algebra example

int N = 1 << 20;
cublasInit();
cublasAlloc(N, sizeof(float), (void**)&d_x);
cublasAlloc(N, sizeof(float), (void**)&d_y);

cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(N, sizeof(x[0]), y, 1, d_y, 1);

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]
cublasSaxpy(N, 2.0, d_x, d_y, 1);

cublasGetVector(N, sizeof(y[0]), d_y, 1, y, 1);

cublasFree(d_x);
cublasFree(x_y);

cublasShutdown();
12

Transfer data to GPU

Read data back GPU

CUDA Math Libraries

 High performance math routines for your applications:
 cuFFT: Fast Fourier Transforms Library.
 cuBLAS: Complete BLAS (Basic Linear Algebra Subroutines) Library.
 cuSPARSE: Sparse Matrix Library.
 cuRAND: RNG (Random Number Generation) Library.
 NPP: Performance Primitives for Image & Video Processing.
 Thrust: Templated Parallel Algorithms & Data Structures.
 math.h: C99 floating-point library.

 All included in the CUDA Toolkit. Free download at:
 https://developer.nvidia.com/cuda-downloads

13

GPU accelerated libraries

 Many other libraries outside the CUDA Toolkit...

... not to mention all programs that are available on the
Web thanks to the generosity of tough programmers.

14

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal

Image Processing

GPU Accelerated

Linear Algebra

Matrix Algebra

on GPU and

Multicore
NVIDIA cuFFT

C++ STL

Features for

CUDA
IMSL Library

Building-block

Algorithms for

CUDA

ArrayFire Matrix
Computations

Sparse Linear

Algebra

 Developed by Nvidia.

 Open source libraries.

Tools and Libraries: Developer ecosystem
enables the application growth

Described in detail on Nvidia Developer Zone:
http://developer.nvidia.com/cuda-tools-ecosystem 15

I. 2. Targeting CUDA
to other platforms

16

Compiling for other target platforms

17

Ocelot
http://code.google.com/p/gpuocelot

It is a dynamic compilation
environment for the PTX code
on heterogeneous systems,
which allows an extensive
analysis of the PTX code
and its migration
to other platforms.

From Feb'11, also considers:
GPUs manufactured by AMD/ATI.
CPUs x86 manufactured by Intel.

18

Swan
http://www.multiscalelab.org/swan

It is a source-to-source translator from CUDA to OpenCL:
It provides a common API which abstracts the runtime support of

CUDA and OpenCL.
It preserves the convenience of launching CUDA kernels

(<<<blocks,threads>>>), generating source C code for the entry
point kernel functions.

... but the conversion process requires human intervention.

Useful for:
Evaluate OpenCL performance for an already existing CUDA code.
Reduce the dependency from nvcc when we compile host code.

Support multiple CUDA compute capabilities on a single binary.
As runtime library to manage OpenCL kernels on new developments.

19

MCUDA
http://impact.crhc.illinois.edu/mcuda.php

Developed by the IMPACT research group at the
University of Illinois.

It is a working environment based on Linux which tries to
migrate CUDA codes efficiently to multicore CPUs.

Available for free download ...

20

PGI CUDA x86 compiler
http://www.pgroup.com

Major differences with previous tools:
It is not a translator from the source code, it works at runtime. It

allows to build a unified binary which simplifies the software
distribution.

Main advantages:
Speed: The compiled code can run on a x86 platform even without

a GPU. This enables the compiler to vectorize code for SSE
instructions (128 bits) or the most recent AVX (256 bits).

Transparency: Even those applications which use GPU native
resources like texture units will have an identical behavior on CPU and
GPU.

Availability: License free for one month if you register as CUDA
developer.

21

I. 3. Accessing CUDA
from other languages

22

Wrappers and interface generators

CUDA can be incorporated into any language that provides
a mechanish for calling C/C++. To simplify the process, we
can use general-purpose interface generators.

SWIG [http://swig.org] (Simplified Wrapper and Interface
Generator) is the most renowned approach in this respect.
Actively supported, widely used and already successful with:
AllegroCL, C#, CFFI, CHICKEN, CLISP, D, Go language,
Guile, Java, Lua, MxScheme/Racket, Ocaml, Octave, Perl,
PHP, Python, R, Ruby, Tcl/Tk.

A connection with Matlab interface is also available:
On a single GPU: Use Jacket, a numerical computing platform.
On multiple GPUs: Use MatWorks Parallel Computing Toolbox.

23

Tools available for six different programmer profiles.

Entry point to CUDA
from most popular languages

24

1. C programmer
CUDA C, OpenACC.

3. C++ programmer
Thrust, CUDA C++.

5. C# programmer

GPU.NET.

2. Fortran programmer
CUDA Fortran, OpenACC.

4. Maths programmer
MATLAB, Mathematica, LabVIEW.

6. Python programmer
PyCUDA.

Get started today

 These languages are supported on all CUDA GPUs.
 It is very likely that you already have a CUDA capable GPU

in your laptop or desktop PC (remember IGPs, EPGs, HPUs).
 Web pages:

 CUDA C/C++: http://developer.nvidia.com/cuda-toolkit
 Thrust C++ Template Lib: http://developer.nvidia.com/thrust
 CUDA Fortran: http://developer.nvidia.com/cuda-toolkit
 GPU.NET: http://tidepowerd.com
 PyCUDA (Python): http://mathema.tician.de/software/pycuda
 MATLAB: http://www.mathworks.com/discovery/matlab-gpu.html
 Mathematica: http://www.wolfram.com/mathematica/new-in-8/

cuda-and-opencl-support
25

CUDA
C, C++, Fortran

LLVM compiler for CUDA

NVIDIA
GPUs

x86
CPUs

New language
support

New Processor
Support

A wild card for languages: On Dec'11, source
code of the CUDA compiler was accessible

This does very convenient
and efficient to connect
with a whole world of:

 Languages on top. For
example, adding front-ends
for Java, Python, R, DSLs.

 Hardwares underneath.
For example, ARM, FPGA, x86.

 CUDA compiler contribu-
ted to Open Source LLVM.

26

I. 4. Using directives: OpenACC

27

OpenACC: A corporative effort
for standardization

28

OpenACC: An alternative to computer
scientist’s CUDA for an average programmer

It is a parallel programming standard for accelerators
based on directives (like OpenMP), which:

Are inserted into C, C++ or Fortran programs.
Drive the compiler to parallelize certain code sections.

Goal: Targeted to an average programmer, code portable
across parallel and multicore processors.

Early development and commercial effort:
The Portland Group (PGI).
Cray.

First supercomputing customers:
United States: Oak Ridge National Lab.
Europe: Swiss National Supercomputing Centre. 29

OpenACC: Directives

 Directives provide a common code base that is
 Multi-platform.
 Multi-vendor.

 This brings an open way to preserve investment in
legacy applications by enabling an easy migration path to
accelerated computing.

 GPU directives allow complete access to the massive
parallel power of a GPU.

 Optimizing code with directives is quite easy, especially
compared to CPU threads or writing CUDA kernels.

 A big achievement is avoiding restructuring of existing
code for production applications. 30

OpenACC: How directives work

Starting from simple hints,
the compiler parallelizes the
code.

It works on:
Many-core GPUs.
Multi-core CPUs.

31

Program myscience
 ... serial code ...
!$acc kernels
 do k = 1,n1
 do i = 1,n2
 ... parallel code ...
 enddo
 enddo
!$acc end kernels
 ...
End Program myscience

CPU GPU

Your original
Fortran or C code

OpenACC
Compiler

Hint

 Step 1: Annotate source code with directives.
!$acc data copy(util1,util2,util3) copyin(ip,scp2,scp2i)

 !$acc parallel loop

 … <source code>

 !$acc end parallel

!$acc end data

 Step 2: Compile & run.
 pgf90 -ta=nvidia -Minfo=accel file.f

Two basic steps to get started

An example

!$acc data copy(A,Anew)
 iter=0
 do while (err > tol .and. iter < iter_max)

 iter = iter +1
 err=0._fp_kind

!$acc kernels
 do j=1,m
 do i=1,n
 Anew(i,j) = .25_fp_kind *(A(i+1,j) + A(i-1,j) &
 +A(i ,j-1) + A(i ,j+1))
 err = max(err, Anew(i,j)-A(i,j))
 end do
 end do

!$acc end kernels
 IF (mod(iter,100)==0 .or. iter == 1) print *, iter, err
 A= Anew

 end do

!$acc end data 33

Copy arrays into GPU
memory within data region

Parallelize code inside
region

Close off parallel region

Close off data region,
copy data back

The key question is:
How much performance do we lose?

 Some results say only 5-10% vs. CUDA in "some" cases.
Other sources say 5x gains investing a week or even a day.

 But this factor is more application-dependent than
influenced by programmer skills.

34

Real-time object detection
Global Manufacturer of Navigation Systems

Valuation of stock portfolios
using Montecarlo

Global Technology Consulting Company

Interaction of solvents and
biomolecules

University of Texas at San Antonio

5x in 1 week 2x in 4 hours 5x in 1 day

Lifecycles of fish
in Australia

University of Melbourne

Stars and galaxies
12.5B years ago

University of Groningen

Neural networks in
self-learning robot

The University of Plymouth

65x in 2 Days 5.6x in 5 Days 4.7x in 4 Hours
35

More recent examples

By	
 end	
 of	
 second	
 day
10x	
 on	
 one	
 atmospheric	
 kernel

6	
 direc8ves

Technology	
 Director
Na8onal	
 Center	
 for	
 Atmospheric	

Research	
 (NCAR)

36

A witness from a recent OpenACC workshop
at Pittsburgh Supercomputing Center

More case studies from GTC'13:
3 OpenACC compilers [PGI, Cray and CAPS]

Performance on M2050 GPU (Fermi, 14x 32 cores),
without counting the CPU-GPU transfer overhead.

Matrix Multiplication size: 2048x2048.
7-point Stencil: 3D array size: 256x256x256.

37

Source: "CUDA vs. OpenACC:
Performance Case Studies",
by T. Hoshino, N. Maruyama,
S. Matsuoka.

Start now with OpenACC directives

 Sign up for a free trial of the directives compiler (thanks
to PGI), and get also tools for quick ramp (see http://
www.nvidia.com/gpudirectives)

A compiler is also
available from CAPS
for $199/199€.

38

II. Programming examples:
Six ways to SAXPY on GPUs

39

What does SAXPY stand for? Single-precision
Alpha X Plus Y. It is part of BLAS Library.

 Using this basic code, we will illustrate six different ways
of programming the GPU:

 CUDA C.
 CUBLAS Library.
 CUDA Fortran.
 Thrust C++ Template Library.
 C# with GPU.NET.
 OpenACC.

40

1. CUDA C

41

void saxpy_serial(int n, float a, float *x, float *y)
{
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}
// Invoke SAXPY kernel (serial on 1M elements)
saxpy_serial(4096*256, 2.0, x, y);

__global__ void saxpy_parallel(int n,float a,float *x,float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
}
// Invoke SAXPY kernel (parallel on 4096 blocks of 256 threads)
saxpy_parallel<<<4096, 256>>>(4096*256, 2.0, x, y);

Standard C code:

CUDA code for a parallel execution on GPU:

2. CUBLAS Library

42

int N = 1 << 20;
// Utiliza la librería BLAS de tu elección

// Invoke SAXPY routine (serial on 1M elements)
blas_saxpy(4096*256, 2.0, x, 1, y, 1);

int N = 1 << 20;
cublasInit();
cublasSetVector (N, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector (N, sizeof(y[0]), y, 1, d_y, 1);
// Invoke SAXPY routine (parallel on 1M elements)
cublasSaxpy (N, 2.0, d_x, 1, d_y, 1);
cublasGetVector (N, sizeof(y[0], d_y, 1, y, 1);
cublasShutdown();

Sequential BLAS code

cuBLAS parallel code

3. CUDA Fortran

43

Standard Fortran Parallel Fortran
module my module contains
 subroutine saxpy (n, a, x, y)

 real :: x(:), y(:), a
 integer :: n, i
 do i=1,n

 y(i) = a*x(i) + y(i);
 enddo

 end subroutine saxpy
end module mymodule

program main
 use mymodule

 real :: x(2**20), y(2**20)
 x = 1.0, y = 2.0

 $ Perform SAXPY on 1M elements
 call saxpy(2**20, 2.0, x, y)

end program main

module mymodule contains
 attributes(global) subroutine saxpy(n, a, x, y)

 real :: x(:), y(:), a
 integer :: n, i
 attributes(value) :: a, n

 i = threadIdx%x + (blockIdx%x-1) * blockDim%x
 if (i<=n) y(i) = a*x(i) + y(i)

 end subroutine saxpy
end module mymodule

program main
 use cudafor; use mymodule

 real, device :: x_d(2**20), y_d(2**20)
 x_d = 1.0, y_d = 2.0

 $ Perform SAXPY on 1M elements
 call saxpy<<<4096,256>>>(2**20, 2.0, x_d, y_d)

 y = y_d
end program main

4.1.CUDA C++: Develop Generic Parallel Code

 CUDA C++ features enable sophisticated and flexible
applications and middleware:

 Class hierarchies.
 __device__methods.
 Templates.
 Operator overloading.
 Functors (function objects).
 Device-side new/delete.
 ...

44

4.2. Thrust C++ STL

 Thrust is an open source parallel algorithms library
which resembles C++ Standard Template Library (STL).
Major features:

 High-level interface:
 Enhances developer productivity.
 Enables performance portability between GPUs and CPUs.

 Flexible:
 CUDA, OpenMP and TBB (Thread Building Blocks) backends.
 Extensible and customizable.
 Integrates with existing software.

Efficient:
GPU code written without directly writing any CUDA kernel calls.

45

If you are a C++ programmer you are more than likely familiar with the Standard Template
Library, or STL.
Thrust is an open-source parallel algorithms library which resembles the C++ STL.
Thrust's high-level interface greatly enhances developer productivity while enabling performance portability
between GPUs and multicore CPUs. Thrust includes back-end implementations for established technologies
including
CUDA, Intel Threading Building Blocks, and the OpenMP standard. The latest version of Thrust also enables custom
back ends to be implemented. This interoperability facilitates integration with existing software.

Thrust is extremely flexible and powerful – its high-level interface enables efficient GPU code to be written
without directly writing any CUDA kernel calls. Thrust provides a GPU data container called device_vector that
abstracts copying data to and from the GPU, and it provides a large set of efficient algorithms for operating on these
vectors, including sorting, searching, reductions, set operations, and transformations. The example on the right
shows the creation of a vector on the host CPU, where it is filled with random values. The vector is then copied to the
GPU by assigning it to a device vector, and then the device vector is sorted. Thrustʼs radix sort is extremely fast,
sorting well over a billion keys per second on GPUs.

4.2. Thrust C++ STL (cont.)

46

Serial C++ Code
with STL and Boost

Parallel C++ CodeParallel C++ Code

int N = 1<<20;
std::vector<float> x(N), y(N);

...

// Invoke SAXPY on 1M elements
std::transform(x.begin(), x.end

(),
 y.begin(), x.end
(),

 2.0f * _1 +
_2);

int N = 1<<20;

thrust::host_vector<float> x(N), y(N);
...

...
thrust::device_vector<float> d_x = x;

thrust::device_vector<float> d_y = y;

// Invoke SAXPY on 1M elements
thrust::transform(x.begin(), x.end(),
 y.begin(), y.begin(),

 2.0f * _1 + _2);

int N = 1<<20;

thrust::host_vector<float> x(N), y(N);
...

...
thrust::device_vector<float> d_x = x;

thrust::device_vector<float> d_y = y;

// Invoke SAXPY on 1M elements
thrust::transform(x.begin(), x.end(),
 y.begin(), y.begin(),

 2.0f * _1 + _2);

http://www.boost.org/libs/lambda http://www.boost.org/libs/lambda http://developer.nvidia.com/thrust

5. C# with GPU.NET

47

Standard C# Parallel C#

private static

void saxpy (int n, float a,
 float[] a, float[] y)

{
 for (int i=0; i<n; i++)
 y[i] = a*x[i] + y[i];

}

int N = 1<<20;

// Invoke SAXPY on 1M elements

saxpy(N, 2.0, x, y)

[kernel]
private static

void saxpy (int n, float a,
 float[] a, float[] y)

{
 int i = BlockIndex.x * BlockDimension.x +
 ThreadIndex.x;

 if (i < n)
 y[i] = a*x[i] + y[i];

}

int N = 1<<20;

Launcher.SetGridSize(4096);

Launcher.SetBlockSize(256);

// Invoke SAXPY on 1M elements

saxpy(2**20, 2.0, x, y)

6. OpenACC Compiler Directives

48

Parallel C Code Parallel Fortran Code

void saxpy (int n, float a,
 float[] a, float[] y)

{
#pragma acc kernels
 for (int i=0; i<n; i++)

 y[i] = a*x[i] + y[i];
}

...
// Perform SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y)
...

subroutine saxpy(n, a, x, y)

 real :: x(:), y(:), a
 integer :: n, i
$!acc kernels

 do i=1. n
 y(i) = a*x(i) + y(i)

 enddo
$!acc end kernels
end subroutine saxpy

...

$ Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

There is support for all these 6 approaches on every CUDA
GPU (more than 400 million as of 2013). It is very likely that
you have one of those within your laptop/desktop.

Summary

49

1. CUDA C/C++
http://developer.nvidia.com/cuda-toolkit

3. CUBLAS Library
http://developer.nvidia.com/cublas

5. C# with GPU.NET

http://tidepowerd.com

2. CUDA Fortran
http://developer.nvidia.com/cuda-fortran

4. Thrust
http://developer.nvidia.com/thrust

6. OpenACC
http://developer.nvidia.com/openacc

