Approaches to GPU computing

>

NVIDIA.

Manuel Ujaldon
Nvidia CUDA Fellow
Computer Architecture Department
University of Malaga (Spain)

>

NVIDIA.

Talk outline [40 slides]

1. Programming choices. [30]
1. CUDA libraries and tools. [10]
2. Targeting CUDA to other platforms. [5]
3. Accessing CUDA from other languages. [4]

4. Using directives: OpenACC. [11]
2. Examples: Six ways to implement SAXPY on GPUSs. [9]

3. Summary. [1]

Manuel Ujaldon - Nvidia CUDA Fellow

NVIDIA.

CUDA Parallel Computing Platform

<3

NVIDIA,

~)
Programming
Approaches “Drop-in” Easily Accelerate Maximum Flexibilit
_ Acceleration Apps y Y,
- Nsight IDE CUDA-GDB A
Development Linux, Mac and Windows debugger
: GPU Debugging and NVIDIA Visual
Environment Profiling .
\ Profiler Yy
7)
i Enables compiling new languages to CUDA
Open ComPller LOLAYM platform, and CUDA languages to other
TOO' Chaln INFRASTRUCTURE architectures)
4 SMX Dynamic HyperQ GPUDirect
Parallelism
Hardware ‘s
— NS
Capabilities M e
T . Wi mm
_ J

<

NVIDIA.

Manuel Ujaldon - Nvidia CUDA Fellow

|. 1. CUDA Libraries and tools

>

NVIDIA.

Libraries: Easy, high-quality

Ease of use: Using libraries enab
without in-depth knowledge of GPU

acceleration

es GPU acceleration
Drogramming.

"Drop-in": Many GPU-accelerated libraries follow
standard APIs, thus enabling accel. with minimal changes.

Quality: Libraries offer high-quality implementations of
functions encountered in a broad range of applications.

Performance: Nvidia libraries are tuned by experts.

Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA,

<

NVIDIA,

Three steps to CUDA-accelerated applications

- Step 1: Substitute library calls with equivalent CUDA
library calls.
- saxpy(...) -—> cublasSaxpy (...)

- Step 2: Manage data locality.
- With CUDA: cudaMalloc(), cudaMemcpy(), etc.
- With CUBLAS: cublasAlloc(), cublasSetVector(), etc.

> Step 3: Rebuild and link the CUDA-accelerated library.

~ nvcc myobj.o -I cublas

Manuel Ujaldon - Nvidia CUDA Fellow

<3

NVIDIA.

A linear algebra example

int N =1 << 20;

// Perform SAXPY on 1M elements: y[]l=a*x[]+y]I[]
saxpy (N, 2.0, x, y, 1);

Manuel Ujaldon - Nvidia CUDA Fellow

<3

NVIDIA,

A linear algebra example

int N =1 << 20;

// Perform SAXPY on 1M elements: d y[]=a*d x[]+

Add "cublas" prefix and
cublasSaxpy (N, 2.0, d x, d y, 1)/ 4‘ use device vI:riabIes

Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA,

A linear algebra example

int N =1 << 20; I
cublasInit() ; - Initialize CUBLAS

// Perform SAXPY on 1M elements: d y[]=a*d x[]+d y[]
cublasSaxpy (N, 2.0, d x, dy, 1);

cublasShutdown () ; { Shut down CUBLAS
0

Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA,

A linear algebra example

int N =1 << 20;
cublasInit() ;

cublasAlloc (N, sizeof(float), (void**)é&d x); - p
cublasAlloc (N, sizeof (float), (void**)s&d y) ;< ocate device vectors

// Perform SAXPY on 1M elements: d y[]=a*d x[]+d y[]
cublasSaxpy (N, 2.0, d x, dy, 1);

cublasFree (d x); .
cublasFree (x_y) ; - Deallocate device vectors

cublasShutdown () ;

= Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA,

A linear algebra example

int N =1 << 20;

cublasInit() ;

cublasAlloc (N, sizeof(float), (void*¥*)é&d x);
cublasAlloc (N, sizeof(float), (void*¥*)s&d y);

cublasSetVector (N, sizeof(x[0]), x, 1, d x, 1); ‘ Transfer data to GPU
cublasSetVector (N, sizeof(x[0]), y, 1, d vy, 1);

// Perform SAXPY on 1M elements: d y[]=a*d x[]+d y[]
cublasSaxpy (N, 2.0, d x, dy, 1);

cublasGetVector (N, sizeof(y[0]), d vy, 1, y, 1); 4 Read data back GPU

cublasFree (d x);
cublasFree (x_y) ;

cublasShutdown () ;

>N Manuel Ujaldon - Nvidia CUDA Fellow

NVIDIA,

CUDA Math Libraries

High performance math routines for your applications:
CUuFFT: Fast Fourier Transforms Library.
cuBLAS: Complete BLAS (Basic Linear Algebra Subroutines) Library.
CuSPARSE: Sparse Matrix Library.
CURAND: RNG (Random Number Generation) Library.
NPP: Performance Primitives for Image & Video Processing.
Thrust: Templated Parallel Algorithms & Data Structures.
math.h: C99 floating-point library.

All included in the CUDA Toolkit. Free download at:
https://developer.nvidia.com/cuda-downloads

13

IIIIIII

<

NVIDIA,

GPU accelerated libraries

> Many other libraries outside the CUDA Toolkit...
(©) Developed by Nvidia.

||||||||||

il
NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE

™ *
GPU USIPL | ECIRRE
Vector Signal GPU Accelerated on GPU and

o
Matrix Algebra :
Image Processing Linear Algebra mzouts NVIDIA cuFFT

__Multicore
S ' ST
MAVE {M i

SOFTWARE Sparse Linear C++ STL “
. ArrayFire Matrix 4
IMSL Library Computations Algebra mpav. Feaélﬁrgz for °e:m:ze;”J

- ... hot to mention all programs that are available on the
Web thanks to the generosity of tough programmers.
>

NN Manuel Ujaldon - Nvidia CUDA Fellow

14

NVIDIA.

NVIDIA
Parallel Nsight ParaTools PGI EMPhotonics Allinea DDT
CUDAC/C++ F i Studio IDE um?es VampirTrace CULAPACK e
NVIDIANPP I opencv N Bright Cluster | Thrust c+ PGI CAPS HIEP
CUDA Beta Manager Template Lib § CUDA Fortran
Primitives
Tools &

Libraries

MOAB Torque
R-Stream TotalView
R PBSWorks Adaptive Adaptive C++-AMP
i e Platform LSF TauCUDA GPU Packages
EM Library Cluster Perf Tools For R Stats
| Manager Pkg

Described in detail on Nvidia Developer Zone:
http://developer.nvidia.com/cuda-tools-ecosystem N

IIIIIII

l. 2. Targeting CUDA

to other platforms

>

NVIDIA.

<

NVIDIA,

Compiling for other target platforms

|
l

CUDA source |

PGI
CUDA-x86

MCUDA

(CUDA o C
translation) translation)

C OpenCL

NVIDIA GPU X86_64 CPU AMD GPU

Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA,

Ocelot
http: . le.com I

~ It is a dynamic compilation

environment for the PTX code X Emuiation
on heterogeneous systems, =1 &=
which allows an extensive Ocelot Infrastructure
analysis of the PTX code
and its migration

to other platforms. "=.- j > =] wouon

- From Feb'l1, also considers: < \

- GPUs manufactured by AMD/ATI. B, T Taser
- CPUs x86 manufactured by Intel. E @ .

d m pdom dataflow

@

hy,

g

PTX Kernel SmmcOla

/

x86 Multicore 18

Manuel Ujaldon - Nvidia CUDA Fellow

N
=
|
[1C

NVIDIA.

1)

N I

n://WWW.multiscalelab.ora/swan

IIIIIII

—

It is a source-to-source translator from CUDA to OpenCL:

It provides a common API which abstracts the runtime support of
CUDA and OpenCL.

It preserves the convenience of launching CUDA kernels

(<<<blocks,threads>>>), generating source C code for the entry
point kernel functions.

. but the conversion process requires human intervention.
Useful for:
Evaluate OpenCL performance for an already existing CUDA code.
Reduce the dependency from nvec when we compile host code.

Support multiple CUDA compute capabilities on a single binary.
As runtime library to manage OpenCL kernels on new developments.

19

'Developed by the IMPACT research group at the
University of Illinois.

‘It is a working environment based on Linux which tries to
migrate CUDA codes efficiently to multicore CPUs.

'Available for free download ...

The FMP*EST Research Group

|| lllinois Microarchitecture Project utilizing Advanced Compiler Technology

MCUDA Download Page

Home
The MCUDA translation framework is a linux-based tool designed to effectively compile the CUDA
About Our Group programming model to a CPU architecture.
People The MCUDA tool is available under the following license agreement. Clicking the button below
. indicates agreement to the terms laid out below.
Projects License Agreement
Publications

lllinois Open Source License
Students Open Source License

Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA,

NVIDIA.

IIIIIII

Major differences with previous tools:

It is not a translator from the source code, it works at runtime. It
allows to build a unified binary which simplifies the software
distribution.

Main advantages:

Speed: The compiled code can run on a x86 platform even without
a GPU. This enables the compiler to vectorize code for SSE
instructions (128 bits) or the most recent AVX (256 bits).

Transparency: Even those applications which use GPU native
resources like texture units will have an identical behavior on CPU and
GPU.

Availability: License free for one month if you register as CUDA
developer.

21

|. 3. Accessing CUDA

from other languages

>

NVIDIA.

<

NVIDIA,

Wrappers and interface generators

CUDA can be incorporated into any language that provides
a mechanish for calling C/C++. To simplify the process, we
can use general-purpose interface generators.

SWIG [http://swig.org] (Simplified Wrapper and Interface
Generator) is the most renowned approach in this respect.
Actively supported, widely used and already successful with:
AllegroCL, C#, CFFI, CHICKEN, CLISP, D, Go language,
Guile, Java, Lua, MxScheme/Racket, Ocaml, Octave, Perl,
PHP, Python, R, Ruby, Tcl/Tk.

A connection with Matlab interface is also available:
On a single GPU: Use Jacket, a numerical computing platform.
On multiple GPUs: Use MatWorks Parallel Computing Toolbox.

Manuel Ujaldon - Nvidia CUDA Fellow

<3

NVIDIA,

Entry point to CUDA
from most popular languages

~ Tools available for six different programmer profiles.

(N\
1. C programmer 2. Fortran programmer

CUDA C, OpenAcCC. CUDA Fortran, OpenACC.
-

\
.

N\

J
J

((
3. C++ programmer 4. Maths programmer

Thrust, CUDA C++. MATLAB, Mathematica, LabVIEW.
N

\
\

\

J
J

((
5. C# programmer 6. Python programmer

GPU.NET. PyCUDA.
- AN J

Manuel Ujaldon - Nvidia CUDA Fellow

NVIDIA,

(et startea today

These languages are supported on all CUDA GPUs.

It is very likely that you already have a CUDA capable GPU
in your laptop or desktop PC (remember IGPs, EPGs, HPUSs).
Web pages:
CUDA C/C++: http://developer.nvidia.com/cuda-toolkit
Thrust C++ Template Lib: http://developer.nvidia.com/thrust
CUDA Fortran:_http://developer.nvidia.com/cuda-toolkit
GPU.NET: http://tidepowerd.com
PyCUDA (Python): http://mathema.tician.de/software/pycuda
MATLAB: http://www.mathworks.com/discovery/matlab-gpu.html

Mathematica: http://www.wolfram.com/mathematica/new-in-8/
cuda-and-opencl-support

25

IIIIIII

<3

NVIDIA,

A wild card for languages: On Dec'11, source
code of the CUDA compiler was accessible

< This does very convenient
. CUDA New language

with a whole world of:
~ Languages on top. For

example, adding front-ends
for Java, Python, R, DSLs. LLVM compiler for CUDA J
~ Hardwares underneath. ——
For example, ARM, FPGA, x86. ‘

CPUs Support

~ CUDA compiler contribu-
ted to Open Source LLVM. IE’J-JYM

INFRASTRUCTURE

26

Manuel Ujaldon - Nvidia CUDA Fellow

l. 4. Using directives: OpenACC

>

NVIDIA.

OpenACC: Open Programming Standard
for Parallel Computing

SANVIDIA. [l

THE SUPERCOMPUTER COMPANY

http://www.openacc-standard.org

NVIDIA.

The OpenACC™ API
QUICK REFERENCE GUIDE

The OpenACC Application Program Interface
describes a collection of compiler directives to
specify loops and reglons of code In standard
C, C++ and Fortran o be offloaded from a

host CPU to an attached accelerator, providing
portabllity across operating systems, host CPUs
and accelerators.

Most OpenACC directives apply to the
immediately following structured block or loop
a structured block is a single statement or a
compound statement (C or C++) or a sequence
of statements (Fortran) with a single entry point
at the top and a single exit at the bottom.

”
CAPS

NVIDIA.
PGI

Version 1.0, November 2011

NVIDIA.

28

<

NVIDIA,

OpenACC: An alternative to computer
scientist's CUDA for an average programmer

It is a parallel programming standard for accelerators
based on directives (like OpenMP), which:
Are inserted into C, C++ or Fortran programs.
Drive the compiler to parallelize certain code sections.

Goal: Targeted to an average programmer, code portable
across parallel and multicore processors.
Early development and commercial effort:
The Portland Group (PGI).
Cray.
First supercomputing customers:
United States: Oak Ridge National Lab.
Europe: Swiss National Supercomputing Centre. -

Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA,

OpenACC: Directives

Directives provide a common code base that is
Multi-platform.
Multi-vendor.

This brings an open way to preserve investment in
legacy applications by enabling an easy migration path to
accelerated computing.

GPU directives allow complete access to the massive
parallel power of a GPU.

Optimizing code with directives is quite easy, especially
compared to CPU threads or writing CUDA kernels.

A big achievement is avoiding restructuring of existing
code for production applications. .

>
NVIDIA

Manuel Ujaldon - Nvidia CUDA Fellow

OpenACC: How directives work

<3

NVIDIA,

~ Starting from simple hints,

the compiler parallelizes the
code.
< It works on:

- Many-core GPUs.
< Multi-core CPUs.

CPU

GPU

Program myscience
N\ ... serial code ...
I$acc kernels
dok=1,n1
doi=1,n2
... parallel code ..
enddo
enddo

g

\

I$acc end kernels /

End Program myscience

A

J

Your original

Fortran or C code

Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA,

Two basic steps to get started

~ Step 1: Annotate source code with directives.
~!Sacc data copy(utill,util2,util3) copyin(ip,scp2,scp2i)

- 1Sacc parallel loop
- .. <source code>
- 1Sacc end parallel

~1Sacc end data

~ Step 2: Compile & run.

- pgf90 -ta=nvidia -Minfo=accel file.f

Manuel Ujaldon - Nvidia CUDA Fellow

<3

NVIDIA,

An example

B Copy arrays into GPU
memory within data region

iter=0
do while (err > tol .and. iter < iter max)

iter = iter +1
err=0. fp kind

‘ Parallelize code inside

do j=1,m region

do i=1,n
Anew(i,j) = .25 fp kind *(A(i+l1l,j) + A(i-1,]) &
+A(i ,j-1) + A(1 ,j+1))
err = max(err, Anew(i,j)-A(i,3))

end do
end do
- Close off parallel region
IF (mod(iter,100)==0 .or. iter == 1) print *, iter, err
A= Anew
end do

g Close off data region,
| copy data back

<

NVIDIA.

Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA,

-

How much performance do we |os

(D

-

Some results say only 5-10% vs. CUDA in "some" cases.
Other sources say 5x gains investing a week or even a day.

But this factor is more application-dependent than
influenced by programmer skills.

Real-time object detection Valuation of stock portfolios Interaction of solvents and
Global Manufacturer of Navigation Systems using Montecarlo biomolecules

Global Technology Consulting Company University of Texas at San Antonio

98.6 v
27/30 8 VS

in 1 week in 4 hours

34

IIIIIII

<

NVIDIA,

More recent examples

Lifecycles of fish Stars and galaxies Neural networks in
in Australia 12.5B years ago self-learning robot

University of Melbourne University of Groningen The University of Plymouth

65x in 2 Days 5.6xin 5 Days 4.7x1in 4 Hours

Manuel Ujaldon - Nvidia CUDA Fellow

<3

A witness from a recent OpenACC workshop
at Pittsburgh Supercomputing Center

By end of second day
10x on one atmospheric kernel

6 directives

Technology Director &
National Center for Atmospheric ﬁ NCAR

Research (NCAR)

Manuel Ujaldon - Nvidia CUDA Fellow

<3

NVIDIA,

More case studies from GTC'13:
3 OpenACC compilers [PGI, Cray and CAPS]

~ Performance on M2050 GPU (Fermi, 14x 32 cores),
without counting the CPU-GPU transfer overhead.

~ Matrix Multiplication size: 2048x2048.
~ 7-point Stencil: 3D array size: 256x256x256.

Matrix Multiplication 7-Point Stencil
(Table: # of modified lines, Graph: Performance [Gflops]) (Table: # of modified lines, Graph: Performance [GB/s])
Baseline | Thread Cache loop ‘ Shared Baseline | Thread Branch Register
mapping |blocking | unrolling | blocking mapping | Hoisting | blocking
OpenACC 9 11 62 302 OpenACC 7 10 18 29
CUDA 26 26 77 317 45 CUDA 35 35 45 56
i Baseline W +Thread mapping -~ +Cache blocking i Baseline & +Thread block
& +Loop unrolling i Shared blocking ~ +Branch hoisting i +Register blocking
160 90
140 -~ 8
8120 i
k) 8 60
G 100 =
g g% T
5§ % g40 -
) 8 50
S J
£ .0 5 Source: "CUDA vs. OpenACC:
m -t -
o 20 Performance Case Studies",
q e by T. Hoshino, N. Maruyama,
) i A
! 0 0 S. Matsuoka.

PGI Cray CAPS CUDA

Manuel Ujaldon - Nvidia CUDA Fellow

37

Start now with OpenACC directives

<

NVIDIA,

Sign up for a free trial of the directives compiler (thanks
to PGI), and get also tools for quick ramp (see http://

www.nvidia.com/gpudirectives)

A compiler is also
available from CAPS

for $199/199¢€.

<

NVIDIA.

NVIDIA Home > Prox

NVIDIA.

Search NVIDIA USA - Unig

DOWNLOAD DRIVERS COOL STUFF SHOP PRODUCTS TECHNOLOGIES COMMUNITIES SUPPORT

GPU COMPUTING SOLUTIONS

Main

What is GPU Computing?
Why Choose Tesla

Industry Software Solutions
Tesla Workstation Solutions
Tesla Data Center Solutions
Tesla Bio Workbench
Where to Buy

Contact US

Sign up for Tesla Alerts

Fermi GPU Computing
Architecture

SOFTWARE AND HARDWARE INFO

Tesla Product Literature
Tesla Software Features
Software Development Tools

CUDA Training and Consulting
Services

GPU Cloud Computing Service
Providers

OpenACC GPU Directives

> High Performance Computing > O

GPU Directives

Accelerate Your Scientific Code with OpenACC
The Open Standard for GPU Accelerator Directives

Thousands of cores working for you.

Based on the OpenACC standard, GPU directives are the easy, proven
way to accelerate your scientific or industrial code. With GPU directives,
you can accelerate your code by simply inserting compiler hints into your
code and the compiler will automatically map compute-intensive portions
of your code to the GPU. Here's an example of how easy a single
directive hint can accelerate the calculation of pi. With GPU directives,
you can get started and see results in the same afternoon.

#include <stdio.h>
#define N 10000
int main(void) {
double pi = 0.0f; long i;
fpragma ace n foxr
for (i=0: i<N: i++)
{
double t= (double) ((i+0.5)/N):
pi +=4.0/(1.0+t*t);
}
printf ("pi=%f\n",pi/N);
return 0;

By starting with a free, 30-day trial of PGI directives today, you are
working on the technology that is the foundation of the OpenACC
directives standard. OpenACC is:

"l have written micron
(written in Fortran 90)
properties of two and
dimensional magnetic
directives approach en
port my existing code
perform my computat
which resulted in a sig
speedup (more than 2(
computation.” Learn 7

Professor M. Amin Kay
University of Houston

"The PGl compiler is n
Just how powerful it it
software we are writin
times faster on the NV
are very pleased and e
future uses. It's like ov

supercomputer.”

Dr. Kerry Black
University of Melbourr 38

- Nvidia CUDA Fellow

ll. Programming examples:

Six ways to SAXPY on GPUs

>

NVIDIA.

<3

NVIDIA,

What does SAXPY stand for? Single-precision ..,
Alpha X Plus Y. It is part of BLAS Library.

/Void saxpy_serial(float ... 5\

{for (int 1 = 0; 1 < n; ++1)
y[1] = a*x[1] + y[i];

J)

~ Using this basic code, we will illustrate six different ways

of programming the GPU:

~ CUDA C.

~ CUBLAS Library.

~ CUDA Fortran.

~ Thrust C++ Template Library.

~ C# with GPU.NET.

~ OpenACC.

Manuel Ujaldon - Nvidia CUDA Fellow

<3

NVIDIA,

1. CUDA C

Standard C code:

fzboid saxpy_serial(int n, float a, float *x, float *y))
{
for (int 1 = 0; 1 < n; ++1)
, yl[i]l = a*x[1] + y[i];
// Invoke SAXPY kernel (serial on 1M elements)
\\;axpy_seria1(4096*256, 2.0, X, y); W,

CUDA code for a parallel execution on GPU:

/j_g1oba1__ void saxpy_parallel(int n,float a,float *x,float *y;\
{

int 1 = blockIdx.x*blockDim.x + threadIdx.x;
if Go<n) ylil = anx[i] + y[il;

}
// Invoke SAXPY kernel (parallel on 4096 blocks of 256 threads)
\\faxpy_para11e1<<<4096, 256>>>(04096%256, 2.0, x, Yy); 4/

Manuel Ujaldon - Nvidia CUDA Fellow

2. CUBLAS Library

<3

NVIDIA,

Sequential BLAS code

Fint N = 1 << 20;
// Utiliza la libreria BLAS de tu eleccion

// Invoke SAXPY routine (serial on 1M elements)
\\P1as_saxpy(4096*256, 2.0, x, 1, vy, 1);

cuBLAS parallel code

/ﬁint N =1 << 20;

cublasInit();

cublassetvector (N, sizeof(x[0]), x, 1, d_x, 1);
cublasSetvector (N, sizeof(y[0]), vy, 1, d_y, 1);
// Invoke SAXPY routine (parallel on 1M elements)
cublasSaxpy (N, 2.0, d_x, 1, d_y, 1);
cublasGetvector (N, sizeof(y[0], d_y, 1, vy, 1);
\\fub1asshutdown();

<

nvibia. Manuel Ujaldon - Nvidia CUDA Fellow

3. CUDA rortran

Standard Fortran

module my module contains
subroutine saxpy (n, a, X, Yy)
real :: x(:), y(:), a
integer :: n, i
do i=1,n
y(i) = a*x(i) + y(i);
enddo
end subroutine saxpy
end module mymodule

program main
use mymodule
real :: x(2**20), y(2**20)
x =1.0, vy = 2.0

S Perform SAXPY on 1M elements

call saxpy(2**20, 2.0, x, y)

end program main

NVIDIA.

module mymodule contains
attributes(global) subroutine saxpy(n, a, x,

real :: x(:), y(:), a
integer :: n, i

Y)

attributes(value) :: a, n
i = threadIdx%x + (blockIdx%x-1) * blockDim%x
if (i<=n) y(i) = a*x(i) + y(i)
end subroutine saxpy
end module mymodule

program main

use cudafor; use mymodule

real, device :: x_d(2**20), y_d(2**20)
xd=1.0, yd=2.0

y=yd
end program main

NVIDIA.

43

4.1.CUDA C++: Develop Generic Parallel Code

- CUDA C++ features enable sophisticated and flexible

applications and middleware:
- Class hierarchies.
~ __device__methods.
-~ Templates.
- Operator overloading.
- Functors (function objects).
- Device-side new/delete.

~

/’::;;1ate <typename T>

struct Functor {

__device__ Functor(_a) : a(_a) {}
__device__ T operator(T x) { return a*x; }
T a;

}

template <typename T, typename Oper>
—global__ void kernel(T *output, int n) {
Oper op(3.7);
output = new T[n]; // dynamic allocation
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (3 < n)

\\\~houtput[i] = op(i); // apply functor “’//
}
it

<3

NVIDIA,

Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA,

4.2. Thrust C++ STL

Thrust is an open source parallel algorithms library
which resembles C++ Standard Template Library (STL).
Major features:

High-level interface:
Enhances developer productivity.
Enables performance portability between GPUs and CPUs.

Flexible:
CUDA, OpenMP and TBB (Thread Building Blocks) backends.
Extensible and customizable.
Integrates with existing software.

Efficient:
GPU code written without directly writing any CUDA kernel calls.

Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA,

4.2. Thrust C++ STL (cont.)

Serial C++ Code
with STL and Boost

int N = 1<<20;
std: :vector<float> x(N), y(N); int N = 1<<20;
thrust::host_vector<float> x(N), y(N);

Parallel C++ Code

thrust::device_vector<float> d_x

I
]
e

// Invoke SAXPY on 1M elements | thrust::device_vector<float> d_y = y;

std::transform(x.begin(), x.end

O, // Invoke SAXPY on 1M elements
y.begin(), x.end| thrust::transform(x.begin(), x.end(),

(), y-begin(), y.begin(),
2.0f * 1 + 2.0f * 1 + _2);

_2);

http://www.boost.org/libs/lambda http://developer.nvidia.com/thrust

46
= Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA.

Standard C#

private static
void saxpy (int n, float a,
float[] a, float[] y)

{
for (int i=0; i<n; i++)
yl[il = a*x[i] + y[i];
}
int N = 1<<20;

// Invoke SAXPY on 1M elements
saxpy(N, 2.0, x, y)

5. C# with GPU.NET

Parallel C#

[kernel]

private static

void saxpy (int n, float a,
float[] a, float[] y)

int i = BlockIndex.x * BlockDimension.x +
ThreadIndex.x;
if (i < n)

y[i]l = a*x[i] + y[i];

int N = 1<<20;

Launcher.SetGridSize (4096);
Launcher.SetBlockSize (256);

// Invoke SAXPY on 1M elements

saxpy(2**20, 2.0, x, y)

Manuel Ujaldon - Nvidia CUDA Fellow

<

NVIDIA,

47

<

NVIDIA,

6. OpenACC Compiler Directives

Parallel C Code Parallel Fortran Code

subroutine saxpy(n, a, X, y)

real :: x(: : a
void saxpy (int n, float a, (2)r ¥(2),

integer :: n, 1i
float[] a, float[] y)

Slacc kernels

{

#pragma acc kernels
for (int i=0; i<n; i++)

y[i] = a*x[i] + y[i];

do i=1l. n
y(i) = a*x(i) + y(i)
enddo
$!acc end kernels
end subroutine saxpy

// Perform SAXPY on 1M elements

S Perform SAXPY on 1M elements
saxpy (1<<20, 2.0, x, y)

call saxpy(2**20, 2.0, x d, y_d)

48

= Manuel Ujaldon - Nvidia CUDA Fellow

<3

NVIDIA,

Summary

~ There is support for all these 6 approaches on every CUDA
GPU (more than 400 million as of 2013). It is very likely that
you have one of those within your laptop/desktop.

4 N A
1. CUDA C/C++ 2. CUDA Fortran
http://developer.nvidia.com/cuda-toolkit http://developer.nvidia.com/cuda-fortran

- J Y,

~ _ N)
3. CUBLAS Library 4. Thrust
http://developer.nvidia.com/cublas http://developer.nvidia.com/thrust

- J Y,

~ _ N)
5. C# with GPU.NET 6. OpenACC
http://tidepowerd.com http://developer.nvidia.com/openacc

- J Y,

Manuel Ujaldon - Nvidia CUDA Fellow

