
Welcome

Overview of the week
29 April to 03 May, 2013
Week 18

29 Monday 30 Tuesday 1 Wednesday 2 Thursday 3 Friday

Worker's Day

8 AM

9 AM

10 AM

11 AM

Noon

1 PM

2 PM

3 PM

4 PM

5 PM

Introduction to Course,
Overview of Parallel Comput-
ing (M. Kuttel, UCT). Intro-
duction to CUDA (J. Gain, UCT)
CS LT303
Tea

Programming in CUDA: the
essentials : J. Stone

Lunch

Prac 01 - Introduction to clus-
ter computing - Hello World
on the cluster - CUDA Run-
time API - Vector Addition
CS Honours Computer Lab

CUDA applications I. John
Stone (UIUC)
CS 3.03

Tea

CUDA Applications II. John
Stone (UIUC)

Lunch

Prac 02 - Parallel Reduction
CS Honours Computer Lab

A brief OpenACC intro plus
other general approaches to
GPU computing: Libraries,
tools, accessing CUDA from
other languages, examples
Tea

The Kepler architecture and
six ways to enhance CUDA
programs using its new capa-
bilities. Manuel Ujaldon (U.
Malaga)
Lunch

Prac 03 - Numeric Integration
CS Honours Computer Lab

 Future Nvidia developments:
Echelon project, Dragonfly in-
terconnect, Maxwell and Volta
Tea

Programming for hybrid archi-
tectures. J. Stone (UIUC)

Lunch

Prac 04 - N-body Simulation
CS Honours Computer Lab

Supercomputers and GPUs:
Presence in the top500, an
overview of Titan supercom-
Tea

Many core and the SKA. Simon
Ratcliff (SKA)

Conclusions/wrap-up:
Michelle Kuttel

Lunch

Page 1/1

Overview of the week: Invited
Lecturers

•  John Stone, UIUC
•  Monday, Tuesday, Thursday

•  Manuel Ujaldón, University of Malaga
•  Wednesday, Thursday, Friday

Overview of Parallel
Computing

Michelle Kuttel mkuttel @cs.uct.ac.za
April/May 2013

Overview of parallel computing

Parallel
computing

Tasks
why?

Tools
where?

Techniques
 how?

Testing
was it
worth
it?

Why do we need parallel
computing?

New model for science:
"   theory+experiment+ simulation

"  Grand Challenge
problems
"   cannot be solved in a reasonable

time by today’s computers
"   Many are numerical simulations

of complex physical systems:
•  weather/climate modelling
•  chemical reactions
•  Astronomical simulations
•  Computational fluid dynamics and

turbulence
•  Particle physics
•  Finance - option pricing

e.g. Usage of Oakridge
National Laboratory (USA) CCS
supercomputers in terms of
processor hours by scientific
discipline.

Tasks
why?

Example: Protein folding
challenges

Problem: Given the
composition of a protein, can
you predict how it folds?

"  Levinthal’s paradox:
 many proteins fold extremely

quickly into a favourable
conformation, despite the
number of conformations
possible

"  NP-complete problem –

for a protein of 32 000 atoms, 1
petaflop system will still need
3 years to fold one protein
(100 microseconds of
simulation time)

if you can fold 1, then
you will want to fold
more, assemble a whole
cell, human body … etc.
etc.

Tasks
why?

Protein folding is an example of
an N-Body Problem

"   Many simulations involve computing the interaction
of a large number of particles or objects. If
"   the force between the particles is completely described by

adding the forces between all pairs of particles (pairwise
interactions)

"   the force between each pair acts along the line between
them

"   this is called an N-body central force problem.
"   e.g. astronomical bodies, molecular dynamics, fluid

dynamics, simulations for visual effects industry, gaming
simulations

"   It is straightforward to understand, relevant to
science at large, and difficult to parallelize
effectively.

Weta Digital data center (Wellington, NZ) used to render the animation
for the movie "Avatar." (Photo: Foundry Networks Inc.)

more than 4,000 HP BL2x220c blades

Why do we need parallel
computing?

Tasks
why?

Aim to solve a given problem in less wall-
clock time
e.g. run financial portfolio scenario risk analysis

on all portfolios held by an investment firm
within a time window.

"  OR solve bigger problems within a certain
time
e.g. more portfolios

"  OR achieve better solutions in same time
e.g. use a more accurate scenario model

Tasks
why?

Another goal: use the
computing power you have!

•  During last decade, parallel machines
have become much more widely
available and affordable
"  first Beowulf clusters, now multicore

architectures and accelerators
"  As parallelism becomes ubiquitous, parallel

programming becomes essential
"  parallel programming is much harder than serial

programming!

Tasks
why?

2. Tools

Parallel processing is:
the use of multiple processors to execute

different parts of the same program
simultaneously

But this is a bit vague, isn’t it?

What is a parallel computer?

Tools
where?

What is a parallel
computer?

a set of processors that are able to work
cooperatively to solve a computational problem

"   How big a set?
"   How powerful are the processing elements?
"   How easy is it scale up? (increase number of processors)
"   How do the elements communicate and cooperate?
"   How is data transmitted between processors? What sort of

interconnection is provided and what operations are
available to sequence the actions carried out on different
processors?

"   What are the primitive abstractions that hardware and
software provide to the programmer?

"   How does it all translate into performance?

Tools
where?

A parallel computer is

"  Multiple processors on multiple separate
computers working together on a problem
(cluster)

"   or a computer with multiple internal processors
(multicore and/or multiCPUs) ,

"   or a cpuwith an accelerator (e.g. GPU)
"  Or multicore with accelerators
"  Or multicore with accelerators in a cluster
"  Or …a cloud?
"  Or….

Tools
where?

Flynn’s Taxonomy
"   One of the oldest classifications, proposed by Flynn in 1972
"   Classified by instruction delivery (2 chars) and data stream (2 chars)

Traditional
sequential
computer

• Serial
• deterministic

Vector processors:
• IBM 9000, Cray C90,
Hitachi S3600
• GPUs (sort of)
• Useful for signal
processing, image
processing etc.
• synchronous (lock-step)
• Deterministic

Most HPC’s,
including multi-
core platforms
• (non)
deterministic
• (a)synchronous

Does not exist,
unless pipelined
classified here
• Theoretical
model

Tools
where?

Traditional parallel architectures:

Shared Memory
"   All memory is placed into a single (physical) address

space. Processors connected by some form of
interconnection network

"   Single virtual address space across all of memory. Each
processor can access all locations in memory.

"   Shared memory designs are broken down into two
major categories – SMP and NUMA - depending on
whether or not the access time to shared memory is
uniform or non-uniform.

Tools
where?

Shared Memory:
Advantages

"   Shared memory is attractive because of the
convenience of sharing data
"  Communication occurs implicitly as a result of

conventional memory access instructions (write and
read variables)

"  easiest to program:
•  provides a familiar programming model
•  allows parallel applications to be developed incrementally
•  supports fine-grained communication in a cost-effective

manner
•  no real data distribution or communication issues.

Tools
where?

Shared Memory:
Disadvantages

"   Why doesn’t every one use shared memory ?
"  Limited numbers of processors (tens) –

• Only so many processors can share the same
bus before conflicts dominate.

"  Limited memory size – Memory shares bus as well.
Accessing one part of memory will interfere with
access to other parts.

"  Cache coherence requirements
• data stored in local caches must be consistent

Tools
where?

"   “share-nothing” model - separate computers
connected by a network

"  Memory is physically distributed among
processors; each local memory is directly
accessible only by its processor.

"   Each node runs its own operating system
"  Communication via explicit IO operations

Tools
where?

Traditional parallel architectures:

Distributed Memory

Architectural
Considerations:

Distributed memory
"  A distributed memory multicomputer will

physically scale easier than a shared memory
multicomputer.
"  potentially infinite memory and number of processors

"   Big gap between programming method and
actual hardware primitives
"  Communication is over an interconnection network

using operating system or library calls

"  Access to local data fast, remote slow
"  data distribution is very important.
"  We must minimize communication.

Tools
where?

Current parallel architectures:

Supercomputers
Fastest and most powerful computers in terms of

processing power and I/O capabilities.
www.top500.org

"  semi-annual listing put together by University of
Manheim in Germany (Linpack benchmark)

"  No. 1 Position on Latest TOP500 List (Nov, 2012):
Titan from Oak Ridge National Laboratory
• 17.59 Petaflop/s (quadrillions of calculations

per second) on the Linpack benchmark.
• Titan has 560,640 processors, including 261,632

NVIDIA K20x accelerator cores.

Tools
where?

image from http://www.ornl.gov/info/ornlreview/v45_3_12/article04.shtml

Current supercomputers combine distributed and
shared memory and accelerators:
"  A total of 62 systems on the www.top500.orglist

are using Accelerator/Co-Processor technology:
•  Titan and the Chinese Tianhe-1A system (No.

8) use NVIDIA GPUs to accelerate
computation

• Stampede and six others are accelerated by
the new Intel Xeon Phi processors.

• Six months ago, 58 systems used accelerators
or co-processors.

Tools
where? Current parallel architectures:

Supercomputers

Supercomputers

Supercomputers are not getting faster, they
are getting "wider”:
 processors handle hundreds of parallel threads of

data

changes the way programmers must work –
disruptive technology

Tools
where?

3. Techniques

"  How do you write and run a parallel
program?

Techniques
 how?

Parallel Programming

"  The goal of parallel programming
technologies is to improve the “gain-
to-pain” ratio

"  Parallel language must support 3
aspects of parallel programming:
"  specifying parallel execution
"  communicating between parallel threads
"  expressing synchronization between

threads

Techniques
 how?

Programming a Parallel
Computer

"   can be achieved by:
"   an entirely new language – e.g. Erlang
"   a directives-based data-parallel language e.g. HPF

(data parallelism), OpenMP (shared memory + data
parallelism)

"   an existing high-level language in combination with
a library of external procedures (e.g. message
passing in MPI, threads in CUDA)

"   threads (shared memory – Pthreads, Java threads)
"   a parallelizing compiler
"   other approaches – e.g. object-oriented parallelism

Techniques
 how?

Parallel programming for
supercomputers:

"  For HPC services, most users expected
to use standard MPI or OpenMP, using
either Fortran or C

Techniques
 how?

MPI

"  MPI addresses the message-passing model
"  A computation is a collection of processes

communicating via messages

"  A library, not a language
"   Specifies the names, call sequences and results of

subroutines to be called from Fortran, C and C++
programs

"  A specification, not a particular implementation
"  All parallel computer vendors offer an

implementation for their machines and free
implementations can be downloaded off the internet
(e.g openmpi, lam-mpi,mpich)

"  

"   SPMD

Techniques
 how?

"hello world" program
in C++

#include <iostream>
#include <mpicxx.h> // MPI header file for C++
using namespace std;

int main(int argc, char *argv[]) {
 MPI::Init(argc, argv);
 int myid = MPI::COMM_WORLD.Get_rank();
 cout << "Node " << myid << " : Hello world!"<< endl;
 MPI::Finalize();

 return EXIT_SUCCESS;
}

Techniques
 how?

Message-Passing MPI

"  ubiquity means that no other
technology can beat it for portability

"  availability of MPI-based libraries that
provide high-performance
implementations of commonly-used
algorithms

"  however, explicit communication
requirements can place an additional
burden on programmer

Techniques
 how?

Parallel languages:
OpenMP

"  OpenMP : Open specifications for Multi
Processing
"   The OpenMP interface is an alternative

multithreading interface specifically designed to
support parallel programs

"  An OpenMP program is not appropriate for a
distributed memory environment such as a cluster of
workstations: OpenMP has no message passing
capability.

"  OpenMP recommended when goal is to achieve
modest parallelism on a shared memory computer

Techniques
 how?

Parallel languages: OpenMP

"  OpenMP is the software standard for shared
memory multiprocessors
"  parallel programming model for shared memory and

distributed shared memory multiprocessors

"   recent rise of multicore architectures makes
OpenMP much more relevant
"   though MPI can run on shared memory machines

(passing “messages” through memory), it is much
harder to program.

"  multiprocessor architectures increasingly providing
hardware support for cache coherency

Techniques
 how?

Runtime Execution Model

"  OpenMP uses the highly structured
Fork - Join Model of parallel
execution :
"  All OpenMP programs begin as a single

process: the master thread. The master
thread executes sequentially until the first
parallel region construct is encountered.

Techniques
 how?

 OpenMP

"  Programming with OpenMP:
"  begin with parallelizable algorithm, SPMD

model
"  Annotate the code with parallelization and

synchronization directives (pragmas)"
"  Assumes you know what you are doing"
"  Code regions marked parallel are considered

independent "
"  Programmer is responsibility for protection

against races"
"  Test and Debug "

Techniques
 how?

OpenMP Hello World

int main(int argc, char *argv[]) {
 #pragma omp parallel
 printf("Hello, world.\n");
 return 0;
} The omp keyword distinguishes the pragma as an

OpenMP pragma, so that it is processed by OpenMP
compilers and ignored by non-OpenMP compilers.

OpenMP preserves sequential semantics:
• A serial compiler will ignore the #pragma statements
and produce the usual serial executable.
• An OpenMP-enabled compiler will recognize the
pragmas and produce a parallelized executable
suitable for running on a shared-memory machine.
• simplifies development, debugging and maintenance

Techniques
 how?

4. Testing
"  How do demonstrate that parallel

computing is worth the effort?
"  Identification of the causes of

inefficiency of parallel algorithms and
quantification of their importance are
the basic steps to optimizing the
performance of an application

"  This is where the science comes in …

Testing
was it
worth it?

Performance analysis

"  requires a good understanding of how
all levels of a system behave and
interact
"  from processor architecture to algorithm

"  enormous amount of well-thought
experimentation and benchmarking is
needed in order to optimize
performance

Testing
was it
worth it?

Speedup

Speedup is the factor by which the
time is reduced compared to a
single processor

Speedup for P processes =
time for 1 process

time for P processes

 = T1/TP.

In the ideal situation, as P
increases, so TP should
decrease by a factor of P.

Figure from “Parallel Programming in OpenMP, by Chandra et
al.

Testing
was it
worth it?

Art of
Multiprocessor
Programming

Amdahl’s Law: Recap

Parallel
fraction

Number of
processors

Sequential
fraction

Speedup
=

39

Testing
was it
worth it?

Amdahl’s law*

parallelism (infinite processors) = 1/(1-p)
* G. M. Amdahl, “Validity of the single processor approach to achieving large

scale computing capabilities”, AFIPS Proc. Of the SJCC, 30,438-485,1967

40

Testing
was it
worth it?

Graphing Amdahl’s Law

graphic from lecture slides: Defining Computer “Speed”: An Unsolved Challenge, Dr. John L.
Gustafson, Director Intel Labs, 30 Jan 2011

Testing
was it
worth it?

Why such bad news

 T1 / TP = 1 / (S + (1-S)/P) T1 / T∞ = 1 / S

"   Suppose 33% of a program is sequential
"   Then a billion processors won’t give a speedup over 3

"   Suppose you miss the good old days (1980-2005) where
12ish years was long enough to get 100x speedup
"   Now suppose in 12 years, clock speed is the same but you

get 256 processors instead of 1
"   For 256 processors to get at least 100x speedup, we need

 100 ≤ 1 / (S + (1-S)/256)
 Which means S ≤ .0061 (i.e., 99.4% perfectly parallelizable)

42 slide adapted from: Sophomoric Parallelism and Concurrency,
Lecture 2

Testing
was it
worth it?

Scalability

"  strong scaling:
"  defined as how the solution time varies

with the number of processors for a fixed
total problem size.

"  weak scaling:
"  defined as how the solution time varies

with the number of processors for a fixed
problem size per processor.

Testing
was it
worth it?

"  What if
t1 = t2,
and
work is
what
changes
?

Testing
was it
worth it?

