Kaopstoy
‘g,

o

f
sy of Cop, N

Yitsanruoh.”

Welcome

Week 18

29 Monday

Overview of the week

29 April to 03 May, 2013

30 Tuesday

1 Wednesday

2 Thursday

3 Friday

10 AM

11 AM

Noon

sy of Capg

Worker's Day

Introduction to Course,
Overview of Parallel Comput-
ing (M. Kuttel, UCT). Intro-
duction to CUDA (J. Gain, UCT)
CSLT303

Tea

Programming in CUDA: the
essentials : J. Stone

Lunch

Prac 01 - Introduction to clus-
ter computing - Hello World
on the cluster - CUDA Run-
time APl - Vector Addition

CS Honours Computer Lab

CUDA applications I. John
Stone (UIUC)
CS 3.03

Tea

CUDA Applications Il. John
Stone (UIUC)

Lunch

Prac 02 - Parallel Reduction
CS Honours Computer Lab

A brief OpenACC intro plus
other general approaches to
GPU computing: Libraries,
tools, accessing CUDA from
other languages, examples

Tea

The Kepler architecture and
six ways to enhance CUDA
programs using its new capa-
bilities. Manuel Ujaldon (U.
Malaga)

Lunch

Prac 03 - Numeric Integration
CS Honours Computer Lab

Future Nvidia developments:
Echelon project, Dragonfly in-
terconnect, Maxwell and Volta

Tea

Programming for hybrid archi-
tectures. J. Stone (UIUC)

Lunch

Prac 04 - N-body Simulation
CS Honours Computer Lab

Supercomputers and GPUs:
Presence in the top500, an
overview of Titan supercom-

Tea

Many core and the SKA. Simon
Ratcliff (SKA)

Conclusions /wrap-up:
Michelle Kuttel

Lunch

Page 1/1

Overview of the week: Invited
Lecturers

* John Stone, UIUC
 Monday, Tuesday, Thursday

» Manuel Ujalddn, University of Malaga
 Wednesday, Thursday, Friday

Overview of Parallel
Computing

Michelle Kuttel mkuttel @cs.uct.ac.za
April/May 2013

Overview of parallel computing

Tasks Tools
why? where?

Parallel
computing

Techniques

?
how Testing

was it

worth
it?

Tasks
why?

New model for science:
@ ftheoryt+texperiment+ simulation

@ Grand Challenge

problems

@ cannot be solved in a reasonable
time by today’s computers

@ Many are numerical simulations
of complex physical systems:
e weather/climate modelling
e chemical reactions

e Astronomical simulations

o Computational fluid dynamics and
turbulence

e Particle physics
e Finance - option pricing

Why do we need parallel

computing?

Computer Science

and Mathematics

Biology

High Energy and l_ 11%

Nuclear Physics
O
L5y Chemistry
; 17%
\\
Fusion B
Energy — =
15% .

Climate
Modeling
16%

Materials Sciences
21%

e.g. Usage of Oakridge
National Laboratory (USA) CCS
supercomputers in terms of
processor hours by scientific
discipline.

Tasks Example: Protein folding

why?
challenges

Problem: Given the
composition of a protein, can
you predict how it foldse

Q Levinthal's paradox:

many profeins fold extremely
quickly into a favourable -
conformation, despite the
number of conformations

possible
@ NP-complete problem —

for a protein of 32 000 atoms, 1 if you can fold 1, then
petaflop system will still need you will want to fold
3 years to fold one protein more, assemble a whole
(100 microseconds of cell, human body ... etc.
simulation time) etc.

Profein folding i1s an example of
an N-Body Problernr

@ Many simulations involve computing the interaction
of a large number of particles or objects. If

Q@ the force between the particles is completely described by
adding the forces between all pairs of particles (pairwise
interactions)

o Tp]e force between each pair acts along the line between

them
@ thisis called an N-body central force problem.

@ e.g. astronomical bodies, molecular dynamics, fluid
dynamics, simulations for visual effects indusiry, gaming
simulations

@ It is straightforward to understand, relevant to
science at large, and difficult fo parallelize
effectively.

why? Why do we need parallel

computing?

- o
'
! »

Weta Digifal data center (Wellington, NZ) used to render the animation
for the movie "Avatar." (Photo: Foundry Networks Inc.)

more than 4,000 HP BL2x220c blades

® The (only) goal of parallel
' orogramming is - SPEED!

Aim to solve a given problem in less wall-
clock time

e.g. run financial portfolio scenario risk analysis
on all portfolios held by an investment firm
within a fime window.

@ OR solve bigger problems within a certain
time
e.g. more portfolios

@ OR achieve better solutions in same time
e.g. use a more accurate scenario model

® Another goal: use the

computing power you have!

» During last decade, parallel machines
have become much more widely
available and affordable

Q first Beowulf clusters, now multicore
architectures and accelerators

@ As parallelism becomes ubiquitous, parallel
programming becomes essential

Q@ parallel programming is much harder than serial
programming!

Tools
2. Tools

Parallel processing is:

the use of multiple processors to execute
different parts of the same program
simulfaneously

But this is a bit vague, isn't ite

What is a parallel computere

What is a parallel

computere

a set of processors that are able to work

© © © 0 @

cooperatively to solve a computational problem

How big a set?

How powerful are the processing elementse

How easy is it scale up? (increase number of processors)
How do the elements communicate and cooperate?

How is data transmitted between processorse What sort of
inferconnection is provided and what operations are
available to sequence the actions carried out on different
Processorse

What are the primitive abstractions that hardware and
software provide to the programmer?

How does it all franslate into performance?

Tools
where?

A pardllel computer is

@ Multiple processors on multiple separate
computers working fogether on a problem
(cluster)

@ or a computer with multiple internal processors
(multicore and/or multiCPUs)

@ or a cpuwith an accelerator (e.g. GPU)

@ Or multicore with accelerators

@ Or multicore with accelerators in a cluster
@ Or...acloude

Tools
where?

Traditional
sequential
computer

«Serial
edeterministic

Single

INSTRUCTION
STREAM

Does not exist,
unless pipelined

classified here Mulﬁple
*Theoretical
model

Flynn's Taxonomy

@ One of the oldest classifications, proposed by Flynnin 1972
@ Classified by instruction delivery (2 chars) and data stream (2 chars)

DATA
Single \ STREAM /' Muyltiple
Single Instruction | Single Instruction
Single Data Multiple Data
SISD SIMD
Multiple Instruction | Multiple Instruction
Single Data Multiple Data
MISD MIMD

Vector processors:

«IBM 9000, Cray C90,
Hitachi S3600

*GPUs (sort of)

*Useful for signal
processing, image
processing etc.
*synchronous (lock-step)
*Deterministic

Most HPC’s,
including muilti-
core platforms
*(non)
deterministic
*(a)synchronous

Traditional parallel architectures:
Shared Memory

@ All memory is placed into a single (physical) address
space. Processors connected by some form of
Inferconnection network

@ Single virtual address space across all of memory. Each
processor can access all locations in memory.

@ Shared memory designs are broken down into two
major categories — SMP and NUMA - depending on

whether or not the access time to shared memory is
uniform or non-uniform.

CPU1 CPU2 CPU3

Memory

Shared Memory:
Advantages

@ Shared memory is affractive because of the
convenience of sharing data

@ Communication occurs implicitly as a result of
conventional memory access instructions (write and
read variables)

Q@ eaqsiest to program:
e provides a familiar programming model
e dllows parallel applications to be developed incrementally

e supports fine-grained communication in a cost-effective
manner

* no real data distribution or communication issues.

Shared Memory:
Disadvantages

@ Why doesn’t every one use shared memory ¢
Q Limited numbers of processors (tens) —

e Only so many processors can share the same
bus before conflicts dominate.

Q Limited memory size — Memory shares bus as well.
Accessing one part of memory will interfere with
access to other parts.

@ Cache coherence requirements
e data stored in local caches must be consistent

Memory
Resource

Traditional parallel architectures:

Distributed Memory

@ “share-nothing” model - separate computers
connected by a network

@ Memory is physically distributed among
processors; each local memory is directly
accessible only by its processor.

@ Each node runs its own operating system
@ Communication via explicit IO operations

[memory | | memory | [memory |

CPU1 CPU2 CPU3

Interconnection

Architectural
Considerations:
Distributed memory

@ A distributed memory multicomputer will
physically scale easier than a shared memory
multicomputer.

@ potentially infinite memory and number of processors

@ Big gap between programming method and
actual hardware primitives

Q@ Communication is over an inferconnection network
using operating system or library calls

@ Access to local data fast, remote slow

Q@ data distribution is very important.
@ We must minimize communication.

Tool . .
Current parallel architectures:

Supercomputers

Fastest and most powerful computers in ferms of
processing power and |I/O capabilifies.

www.top500.0rg

Q@ semi-annual listing put together by University of
Manheim in Germany (Linpack benchmark)

@ No. 1 Position on Latest TOPS00 List (Nov, 2012):
Titan from Oak Ridge National Laboratory

e 17.59 Petaflop/s % quadrillions of calculations
per second) on the Linpack benchmark.

e Titan has 560,640 processors, including 261,632
NVIDIA K20x accelerator cores.

image from http://www.ornl.gov/info/ornireview/v45_ 3 12/article04.shtml

Tools .
Current parallel architectures:

Supercomputers

Current supercomputers combine distributed and
shared memory and accelerators:

Q A total of 62 systems on the www.topb500.orglist
are using Accelerator/Co-Processor technology:

e Titan and the Chinese Tianhe-1A system (No.
8) use NVIDIA GPUs to accelerate
computation

e Stampede and six others are accelerated by
the new Intel Xeon Phi processors.

e Six months ago, 58 systems used accelerators
Or CO-Processors.

Supercomputers

Supercomputers are not getting faster, they
are getting "wider’:
pzjocTessors handle hundreds of parallel threads of
ata

changes the way programmers must work —
disruptive technology

/ \ 3. Techniques

@ How do you write and run a parallel
programe

/ \ Parallel Programming

@ The goal of parallel programming
technologies is fo improve the “gain-
to-pain” rafio

@ Pardllel language must support 3
aspects of parallel programming:

Q specifying parallel execution
Q@ communicating between parallel threads

Q expressing synchronization between
.. Threads

/ Programming a Parallel
Computer

@ can be achieved by:
@ an entirely new language - e.g. Erlang

@ adirectives-based data-parallel language e.g. HPF
(data parallelism), OpenMP (shared memory + data
parallelism)

@ an existing high-level language in combination with
a library of external procedures (e.g. message
passing in MPI, threads in CUDA)

@ threads (shared memory - Pthreads, Java threads)
Q@ a parallelizing compiler
Q@ other approaches — e.g. object-oriented parallelism

/ Technues \ Parallel programming for
supercomputers:

@ For HPC services, most users expected
to use standard MPI or OpenMP, using
either Fortran or C

Techniques
MP!

@ MPI| addresses the message-passing model

@ A computation is a collection of processes
communicating via messages

@ A library, not a language

Q@ Specifies the names, call sequences and results of

subroutines to be called from Fortran, C and C++
pPrograms

@ A specification, not a parficular implementation

@ All parallel computer vendors offer an
Implementation for their machines and free
Implementations can be downloaded off the internet
(e.g openmpi, lam-mpi,mpich)

@..

- ez,
.Q‘\ ‘b,
3 %
H :
> 2

%

"t
g 3
“ronug . 085%

"hello world" program

N C++

#include <iostream>

#include <mpicxx.h> /[MPI header file for C++
using namespace std;

int main(int argc, char *argv(]) {
MPI::Init(argc, argv);
int myid = MP1::COMM_WORLD.Get_rank();
cout << "Node " << myid << " : Hello world!"<< endl,
MPI::Finalize();

return EXIT_SUCCESS;

/ \ Message-Passing MPI

@ ubiguity means that no other
technology can beat it for portability

@ availability of MPI-based libraries that
provide high-performance
Implementations of commonly-used
algorithms

@ however, explicit communication
requirements can place an additional
burden on programmer

/ \ Parallel languages:
OpenMP

@ OpenMP : Open specifications for Multi
Processing
@ The OpenMP interface is an alternative

multithreading interface specifically designed to
support parallel programs

@ An OpenMP program is not appropriate for a
distributed memory environment such as a cluster of
workstations: OpenMP has no message passing
capability.

@ OpenMP recommended when goal is to achieve
modest parallelism on a shared memory computer

/

Techniques

Pé(rollel languages: OpenMP

@ OpenMP is the software standard for shared
memory multiprocessors

@ parallel programming model for shared memory and
distributed shared memory multiprocessors

@ recent rise of multicore architectures makes
OpenMP much more relevant
@ though MPI can run on shared memory machines

(passing “messages” through memory), it is much
harder to program.

@ multiprocessor architectures increasingly providing
hardware support for cache coherency

/

Techniques

\Run’rime Execution Model

@ OpenMP uses the highly sfructured
Fork - Join Model of parallel
execution :

Q@ All OpenMP programs begin as a single
process. the master thread. The master

thread executes sequentially unftil the first
parallel region construct is encountered.

{ parallel region} { parallel region}

@ Programming with OpenMP:

Q begin with parallelizable algorithm, SPMD
model

@ Annotate the code with parallelization and
synchronization directives (pragmas)
@ Assumes you know what you are doing

Q@ Code regions marked parallel are considered
Independent

Q@ Programmer is responsibility for protection
against races

@ Test and Debug

Techniques

OpenMP Hello World

iINnt main(int argc, char *argv(]) {
#pragma omp parallel
printf("Hello, world.\n");
return O;

} The omp keyword distinguishes the pragma as an
OpenMP pragma, so that it is processed by OpenMP
compilers and ignored by non-OpenMP compilers.

OpenMP preserves sequential semantics:
A serial compiler will ignore the #pragma statements
and produce the usual serial executable.
*An OpenMP-enabled compiler will recognize the
pragmas and produce a parallelized executable
suitable for running on a shared-memory machine.
simplifies development, debugging and maintenance

Testing
was it

4. Testing

@ How do demonstrate that parallel
computing is worth the effort?

@ [denftification of the causes of
inefficiency of parallel algorithms and
quantification of their importance are
the basic steps to optimizing the
performance of an application

@ This Is where the science comes in ...

Testing
was it

Performance analysis

@ requires a good understanding of how
all levels of a system behave and
iIntferact

Q from processor architecture to algorithm

@ enormous amount of well-thought
experimentation and benchmarking is
needed In order to optimize

_foerformance

Testing
was it
worth it?

Speedup is the factor by which the
time is reduced compared to @
single processor

Speedup for P processes =
time for 1 process
time for P processes

Speedup

=T, /To.

In the ideal situation, as P
increases, so T, should
decrease by a factor of figye .|

al.

Speedup

| == 200 x 250 x 27 grid |

T T T T T |
60 80 100 120 140

Number of processors used

Performance of the MM5 weather code.

Figure from “Parallel Programming in OpenMP, by Chandra et

Testing
was it

Amdahl’s Law: Recap

Sequential
fraction

Speedup

Number of
processors

of
‘Multiprocessor
Pr'ogr'ammi ng

Parallel
fraction

ﬂﬁ

N

;

39

Testing
was it
worth it?

Amdahl’s law

parallelism (infinite processors) = 1/(1-p)

* G. M. Amdanl, “Validity of the single processor approach to achieving large
scale computing capabilities”, AFIPS Proc. Of the SJCC, 30,438-485,1967

40

Testing
was it
worth it?

raphing Amdahl’s Law

serial fraction f = 0.1

serial fraction f=0.2

Speedup (time reduction)

serial fraction f=0.3

serial fractionf=04

10 20 30 40 50 60
Number of Processors

"'jg.graphic from lecture slides: Defining Computer “Speed”: An Unsolved Challenge, Dr. John L.
& Gustafson, Director Intel Labs, 30 Jan 2011

Testing
was it
worth it?

Why such bad news

T, /T, =1/(S+(1-S)/P) T, /T, =1/$

@ Suppose 33% of a program is sequential
@ Then a billion processors won't give a speedup over 3

@ Suppose you miss the good old days (gl ?80-2005) where
12ish years was long enough to get 100x speedup

@ Now suppose in 12 years, clock speed is the same but you
get 256 processors instead of |

Q@ For 256 processors to get at least 100x speedup, we need
100=<1/(S+(1-S)/256)
Which means § < .0061 (i.e., 99.4% perfectly parallelizable)

slide adapted from: Sophomoric Parallelism and Concurrency, 42
Lecture 2

Testing
was it

Scalabllity

@ strong scaling:

Q@ defined as how the solution fime varies
with the number of processors for a fixed
total problem size.

@ weak scaling:

Q@ defined as how the solution time varies
with the number of processors for a fixed
problem size per processor.

Testing
was it
worth it?

@ What if
t1 =12,
and
work is

what

changes
2

30

T

LN L A e

25

LN (LA

20

15

L Bn W e

\ e B)

10

Speedup when execution
time is fixed (Gustafson)

Speedup when problem
size is fixed (Amdahl)

0.2 0.4 06 0.8

Observable Parallel Fraction of Existing Workload

1.0

