New hardware features in Kepler, SMX and Tesla K40

GPGPU2: Advanced Methods for Computing with CUDA

Cape Town, April, 2014

Manuel Ujaldón

Computer Architecture Department. University of Malaga. CUDA Fellow

``... and if software people wants good machines, they must learn more about hardware to influence that way hardware designers ..."

David A. Patterson & John Hennessy

Organization and Computer Design Mc-Graw-Hill (1995) Chapter 9, page 569

Talk outline [63 slides]

- 1. Introducing the architecture [4 slides]
- 2. The memory [3]
- 3. The SMX cores [9]
- 4. How the SMX works: Front-end and back-end [21]
- 5. Functional enhancements [11]
 - 1. Dynamic parallelism [5]
 - 2. Hyper-Q [6]

6. A look to the future [15]

- 1. Vectorization: The warp size [7]
- 2. Stacked-DRAM: 3D memory on top of the GPU [4]
- 3. Analysis based on the roofline model [4]

1. Introducing the architecture

The three pillars of Kepler

And its three basic innovations

Manuel Ujaldon - Nvidia CUDA Fellow

SMX Balance of Resources: Summary of improvements versus Fermi

Resource	Kepler GK110 vs. Fermi GF100
Floating-point throughput	2-3x
Maximum number of blocks per SMX	2x
Maximum number of threads per SMX	1.3x
Register file bandwidth	2x
Register file capacity	2x
Shared memory bandwidth	2x
Shared memory capacity	1x
L2 bandwidth	2x
L2 cache capacity	2x

Commercial models available for Kepler: GeForce vs. Tesla

Designed for gamers:
 Price is a priority (<500€).
 Availability and popularity.
 Little video memory (1-2 GB.).
 Frequency slightly ahead.
 Hyper-Q only for CUDA streams.
 Perfect for developing code which can later run on a Tesla.

Oriented to HPC:

- Reliable (3 year warranty).
- For cluster deployment.
- More video memory (6-12 GB.).
- Tested for endless run (24/7).
- Hyper-Q for MPI.
- GPUDirect (RDMA) and other features for GPU clusters.

2. Memory

The memory in Tesla cards: Fermi vs. Kepler

Tesla card	M2075	M2090	K20	K20X	K40
32-bit register file / multiprocessor	32768	32768	65536	65536	65536
L1 cache + shared memory size	64 KB.	64 KB.	64 KB.	64 KB.	64 KB.
Width of 32 shared memory banks	32 bits	32 bits	64 bits	64 bits	64 bits
SRAM clock freq. (same as GPU)	575 MHz	650 MHz	706 MHz	732 MHz	745,810,875 MHz
L1 and shared memory bandwidth	73.6 GB/s.	83.2 GB/s.	180.7 GB/s	187.3 GB/s	216.2 GB/s.
L2 cache size	768 KB.	768 KB.	1.25 MB.	1.5 MB.	1.5 MB.
L2 cache bandwidth (bytes/cycle)	384	384	1024	1024	1024
L2 on atomic ops. (shared address)	1/9 per clk	1/9 per clk	1 per clk	1 per clk	1 per clk
L2 on atomic ops. (indep. address)	24 per clk	24 per clk	64 per clk	64 per clk	64 per clk
DRAM memory width	384 bits	384 bits	320 bits	384 bits	384 bits
DRAM memory clock (MHz)	2x 1500	2x 1850	2x 2600	2x 2600	2 x 3000
DRAM bandwidth (ECC off)	144 GB/s.	177 GB/s.	208 GB/s.	250 GB/s.	288 GB/s.
DRAM memory size (all GDDR5)	6 GB.	6 GB.	5 GB.	6 GB.	12 GB.
External bus to connect to CPU	PCI-e 2.0	PCI-e 2.0	PCI-e 3.0	PCI-e 3.0	РСІ-е 3.0

Differences in memory hierarchy: Fermi vs. Kepler

Kepler Memory Hierarchy

The memory hierarchy in numbers

GPU generation	Fer	mi	Ke	oler			
Hardware model	GF100	GF104	GK104	GK110	Limi-	Impact	
CUDA Compute Capability (CCC)	2.0	2.1	3.0	3.5	Cacion		
Max. 32 bits registers / thread	63	63	63	255	SW.	Working set	
32 bits registers / Multiprocessor	32 K	32 K	64 K	64 K	HW.	Working set	
Shared memory / Multiprocessor	16-48KB	16-48KB	16-32-48KB	16-32-48 KB	HW.	Tile size	
L1 cache / Multiprocessor	48-16KB	48-16KB	48-32-16KB	48-32-16 KB	HW.	Access speed	
L2 cache / GPU	768 KB.	768 KB.	768 KB.	1536 KB.	HW.	Access speed	

All Fermi and Kepler models are endowed with:

- ECC (Error Correction Code) in the video memory controller.
- Address bus 64 bits wide.

Data bus 64 bits wide for each memory controller (few models include 4 controllers for 256 bits, most have 6 controllers for 384 bits) 12

3. The SMX cores

A brief reminder of what CUDA is about

... and how the architecture scales up

	Te	sla	Fer	mi		K	Kepler GK110 GK110 GeFor (K20) GK110 GeFor 2013 2013-14 2014 3.5 3.5 3.5					
Architecture	G80	GT200	GF100	GF104	GK104 (K10)	GK110 (K20)	GK110 (K40)	GeForce GTX Titan Z				
Time frame	2006-07	2008-09	2010	2011	2012	2013	2013-14	2014				
CUDA Compute Capability (CCC)	1.0	1.2	2.0	2.1	3.0	3.5	3.5	3.5				
N (multiprocs.)	16	30	16	7	8	14	15	30				
M (cores/multip.)	8	8	32	48	192	192	192	192				
Number of cores	128	240	512	336	1536	2688	2880	5760				

Kepler in perspective: Hardware resources and peak performance

Tesla card (commercial model)	M2075	M2090	K20	K20X	K40					
Similar GeForce model in cores	GTX 470	GTX 580	-	GTX Titan	GTX Titan Z (x2)					
GPU generation (and CCC)	C) Fermi GF100 (2.0) Kepler GK110 (3.5)									
Multiprocessors x (cores/multipr.)	14 x 32	16 x 32	13 x 192	14 x 192	15 x 192					
Total number of cores	448	512	2496	2688	2880					
Type of multiprocessor	S	Μ	SMX w	ith dynamic paralelism and Hyper						
Transistors manufacturing process	40 nm.	40 nm.	28 nm.	28 nm.	28 nm.					
GPU clock frequency (for graphics)	575 MHz	650 MHz	706 MHz	732 MHz	745,810,875 MHz					
Core clock frequency (for GPGPU)	1150 MHz	1300 MHz	706 MHz	732 MHz	745,810,875 MHz					
Number of single precision cores	448	512	2496	2688	2880					
GFLOPS (peak single precision)	1030	1331	3520	3950	4290					
Number of double precision cores	224	256	832	896	960					
GFLOPS (peak double precision)	515	665	1170	1310	1680					

The new GeForce GTX Titan Z

5760 cores (2x K40).
Video memory: 12 Gbytes.
Peak performance: 8 TeraFLOPS.
Starting price: \$2999.

GPU Boost

Allows to speed-up the GPU clock up to 17% if the power required by an application is low.

The base clock will be restored if we exceed 235 W.

We can set up a persistent mode which keep values permanently, or another one for a single run.

Every application has a different behaviour regarding power consumption

Here we see the average power (watts) on a Tesla K20X for a set of popular applications within the HPC field:

Those applications which are less power hungry can benefit from a higher clock rate

For the Tesla K40 case, 3 clocks are defined, 8.7% apart.

GPU Boost compared to other approaches

It is better a stationary state for the frequency to avoid thermal stress and improve reliability.

Automatic clock switching

Boost Clock # 2
Boost Clock # 1
Base Clock # 1
Tesla K40

Deterministic Clocks

	Other vendors	Tesla K40
Default	Boost	Base
Preset options	Lock to base clock	3 levels: Base, Boost1 o Boost2
Boost interface	Control panel	Shell command: nv-smi
Target duration for boosts	Roughly 50% of run-time	100% of workload run time

GPU Boost - List of commands

Command	Effect
nvidia-smi -q -d SUPPORTED_CLOCKS	View the clocks supported by our GPU
nvidia-smi -ac <mem clock,<br="">Graphics clock></mem>	Set one of the supported clocks
nvidia-smi -pm 1	Enables persistent mode: The clock settings are preserved after restarting the system or driver
nvidia-smi -pm 0	Enables non-persistent mode: Clock settings revert to base clocks after restarting the system or driver
nvidia-smi -q -d CLOCK	Query the clock in use
nvidia-smi -rac	Reset clocks back to the base clock
nvidia-smi -acp 0	Allow non-root users to change clock rates

Example: Query the clock in use

onvidia-smi -q -d CLOCK -id=0000:86:00.0

=======NVSMI LOG==========

Timestamp	: Wed Jan 29 13:35:58 2014
Driver Version	: 319.37
Attached GPUs	: 5
GPU 0000:86:00.0	
Clocks	
Graphics	: 875 MHz
SM	: 875 MHz
Memory	: 3004 MHz
Applications Clocks	
Graphics	: 875 MHz
Memory	: 3004 MHz
Default Applications Clocks	
Graphics	: 745 MHz
Memory	: 3004 MHz
Max Clocks	
Graphics	: 875 MHz
SM	: 875 MHz
Memory	: 3004 MHz

4. How the SMX works: Front-end and back-end

Kepler GK110: Physical layout of functional units for the Tesla K40 (endowed with 15 SMX)

NVIDIA

The SMX multiprocessor

Instruction scheduling and issuing in **warps**

Instructions execution. 512 functional units:

- 192 for ALUs.
- 192 for FPUs S.P.
- 64 for FPUs D.P.
- 32 for load/store.
- 32 for SFUs (log,sqrt, ...)

Memory access

O.

NVIDIA

From SM multiprocessor in Fermi GF100 to SMX multiprocessor in Kepler GK110

SM Instruction Cache	sмx	AX Instruction Cache Warp Scheduler Warp Scheduler Warp Scheduler																		
Warp Scheduler Warp Scheduler	FIOIIL-EIIU	Dispatch	Unit	Dispatch	Unit	Dis	patch Un	4 I	Dispatch U	int	Dispa	atch Uni		Dispatch	Unit	Dis	ipatch U	nit	Dispatch	Unit
Dispatch Unit Dispatch Unit		Register File (65,536 x 32-bit)																		
Register File (32,768 x 32-bit)		Core Con	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU
	Dealsand	Core Con	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Core Core Core LD/ST	васк-епа	Core Con	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Core Core Core LD/ST		Core Cor	e Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU
LD/ST		Core Con	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOST	SFU
Core Core Core LD/ST		Core Con	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Gore	DP Unit	LOIST	SFU
Core Core Core Core LD/ST		Core Cor	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Com Com Com LD/ST		Core Cor	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
LD/ST SFU	r r	Core Con	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Core Core Core LD/ST		Core Con	e Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU
Com Com Com LD/ST		Core Con	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SEU
LD/ST SFU		Core Con	Gore	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU
Core Core Core LD/ST		Core Con	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Quantum Interconnect Network		Core Cor	e Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU
64 KB Shared Memory / L1 Cache	-						*****	Sinter KB Shar	connec red Mer	t Netwo	erk L1 Car	200000 :he			****					
Uniform Cache	48 KB Read-Only Cache																			
Tex Tex Tex Tex		Tex		Tex	:		Tex		Tex		Т	ſex	ļ	Tex			Tex		Tex	
Texture Cache		Tex		Tex	1		Tex		Tex		Т	ſex		Tex			Tex		Tex	

Manuel Ujaldon - Nvidia CUDA Fellow

A comparison between instructions issue and execution (front-end vs. back-end)

	SM-SMX fetch & issue (front-end)	SM-SMX execution (back-end)
Fermi (GF100)	Can issue 2 warps, 1 instruction each. Total: Up to 2 warps per cycle . Active warps: 48 on each SM, chosen from up to 8 blocks. In GTX580: 16 * 48 = 768 active warps.	 32 cores [1 warp] for "int" and "float". 16 cores for "double" [1/2 warp]. 16 load/store units [1/2 warp]. 4 special function units [1/8 warp]. A total of up to 5 concurrent warps.
Kepler (GK110)	Can issue 4 warps, 2 instructions each. Total: Up to 8 warps per cycle . Active warps: 64 on each SMX, chosen from up to 16 blocks. In K40: 15 * 64 = 960 active warps.	 192 cores [6 warps] for "int" and "float". 64 cores for "double" [2 warps]. 32 load/store units [1 warp]. 32 special function units [1 warp]. A total of up to 16 concurrent warps.

In Kepler, each SMX can issue 8 warp-instructions per cycle, but due to resources and dependencies limitations:

7 is the sustainable peak.

4-5 is a good amount for instruction-limited codes.

<4 in memory- or latency-bound codes.</p>

The way GigaThread scheduling works

Each grid provides a number of blocks, which are assigned to SMXs (up to 16 blocks per SMX in Kepler, 8 in Fermi).
 Blocks are split into warps (groups) of 32 threads.

Warps are issued for each instruction in kernel threads (up to 64 active warps in Kepler, 48 in Fermi). Example:

SM)	SMX Instruction Cache													ſ	Warp Scheduler													
	W	arp Sch	eduler			W	arp Sched	luler			Wa	irp Sch	eduler			w	arp Schee	Juler				Thaip belieublei						
Di	spatch U	•	Dispatch	Unit	Di	spatch U	nit 📃	Dispatch	Unit	Dis	patch U	*	Dispatch	Unit	Di	Dispatch Unit Dispatch Unit					ſ	Instruction Dispatch Unit	Instruction Dispatch Unit					
							R	egister	File (65,536	× 32-t	oit)									0							
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	1	C	Warp 8 instruction 11	Warp 8 instruction 12					
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU		C	Warp 2 instruction 42	Warp 2 instruction 43					
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU		C	Warp 14 instruction 95	Warp 14 instruction 96					
Core	Core	Core	OP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	time		1	1					
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU		(Warp 8 instruction 13	Warp 8 instruction 14					
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU		C	Warp 14 instruction 97	Warp 14 instruction 98					
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU			Warp 2 instruction 44	Warp 2 instruction 45					

NVIDIA

Increasing concurrency and massive parallelism

GPU generation	Fe	Fermi		Kepler	
Hardware model	GF100	GF104	GK104	GK110	
CUDA Compute Capability (CCC)	2.0	2.1	3.0	3.5	
Number of threads / warp (warp size)	32	2 32	2 32	32	
Max. number of warps / Multiprocessor	48	3 48	3 64	64	
Max. number of blocks / Multiprocessor	8	3 8	3 16	16	
Max. number of threads / Block	1024	1024	4 1024	1024	
Max. number of threads / Multiprocessor	1536	5 1536	5 2048	2048	
	Crucial en for hiding	hancement latencies	ts Max. co on ea	oncurrency ach SMX	
		Manuel U	ialdon - Nvidia (CUDA Fellow	

Express as much parallelism as possible: SMXs (Kepler) are wider than SMs (Fermi)

Thread Level Parallelism (TLP) and Instruction Level Parallelism (ILP)

Increase parallelism horizontally via TLP: More **concurrent warps** (larger blocks and/or more active blocks per SMX).

parallelism vertically via ILP: Using more independent instructions.

SMXs can leverage available ILP interchangeably with TLP:

It is much better at this than Fermi.

Sometimes is easier to increase ILP than TLP (for example, a small loop unrolling):

of threads may be limited by algorithm or HW limits.

• We need ILP for attaining a high IPC (Instrs. Per Cycle).

Kepler GPUs can hold together all forms of parallelism. Example: K40.

1: Thread-level parallelism (TLP)

Imagine a 3D tetris with 15 boxes and up to 64 pieces falling down simultaneously on each of them, because that is the way K40 works when all parallelism is deployed.

A quick introduction to our hands-on

1: Thred-level parallelism (TLP)

Sparse matrices processing

Our code traverses the whole matrix, performing operations independently on each element.

Base strategy:

We launch a CUDA kernel for each matrix column.

- Each kernel will have the lowest number of blocks.
- Each kernel will have the largest number of warps.

A quick introduction to our hands-on (2)

Case study: Zernike moments

GPU resources	ALU	32-bits FPU	64-bits FPU	Load/store	SFU
Fermi	32%	32%	16%	16%	4%
Kepler	37.5%	37.5%	12.5%	6.25%	6.25%
Kernel for Zernike	54%	21%	0%	25%	0%
Better	Kepler	Fermi	Kepler	Fermi	Fermi

Fermi is more balanced in this case.

• With the resources distribution in Kepler, the execution of integer arithmetic improves, but the floating-point arithmetic and the load/store worsens. All the others are not used.

Use the CUDA Visual Profiler to know how good your application adapts to resources

Detailed Instruction Mix Visualization Visual Profiler and NSight EE

i Instruction Execution Counts

The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each class the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The "Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due to divergence.

Manuel Ujaldon - Nvidia CUDA Fellow

The way the GPU front-end works: (1) How warps are scheduled

The interface between front-end & back-end: (2) How warps are issued

In the 5 cycles shown, we could have executed all this work.

- In Fermi, there is a deficit in SFUs (blue), whereas in Kepler, the deficit goes to load/store units (green).
- Kepler balances double precision (red) and has a good surplus in "int" and "float" computations, an evidence that real codes have more presence of orange and, overall, yellow instructions.

SM (Fermi)

The way the GPU back-end works: (3) Warps execution

Manuel Ujaldon - Nvidia CUDA Fellow

Some remarks about the "tetris" model

- In Fermi, red tiles are not allowed to be combined with others.
- In Kepler, we cannot take 8 warp_instrs. horizontally, bricks must have a minimum height of 2.
- Instructions have different latency, so those consuming more than one cycle (i.e. double precision floating-point) should expand vertically.
- In case the warp suffers from divergencies, it will consume two cycles, not one. We can extend it vertically like in the previous case.
- Real codes have a mayority of yellow tiles ("int" predominates).
- Some bricks are incomplete, because the warp scheduler cannot find a 4x2 structure free of dependencies.
- Bricks can assemble tiles which are not contiguous.

Warps latency

Even if all tiles be executed in one cycle, warps duration would not be that one. The time elapsed by a warp within the GPU is the addition of three:

- Scheduling time.
- Issuing time.
- Execution time.

Scheduling/execution are quite regular, but issuing is not: It depends on tiles piled up at the bottom of the bucket (reserve stations). That is what explains the variance of its duration.

The warps behaviour teaches us that the GPU is not a regular processor at all

Unpredictable factors at run-time pose a challenge for the workload balance among multiprocessors. Here is an example of the variance for the last 8 warps executed on each multiprocessor of a G80 GPU:

Y SM	Warp	Vis - t	est.bin	.gz																	
Elle	Viev	w <u>H</u> e	lp																		
B I G	<u>6</u> 10	ର୍ ପ୍	•	् ।Select	ion: R	ESET	ZOOM	Side:	SHOW												
	0													time (cycles))					
0_0	9									_	-										
0_1	0						-		-												
0_2	ø		-		_																
0_3	0										_										
1_0	9			-																	
1_1	0																				
1_2	0																				-
1_3	ø																				
2_0	9	1																			
2_1	0																				
2_2	0	-	-																		
2_3	0							_													
3_0	9										_										
3_1	Ø																				
3_2	0					-															
3_3	0									-					-						

5. Functional improvements

5.1. Dynamic parallelism

What is dynamic parallelism?

The ability to launch new grids from the GPU:

- Oynamically: Based on run-time data.
- Simultaneously: From multiple threads at once.
- Independently: Each thread can launch a different grid.

The way we did things in the pre-Kepler era: The GPU was a slave for the CPU

High data bandwidth for communications:

- External: More than 10 GB/s (PCI-express 3).
- Internal: More than 100 GB/s (GDDR5 video memory and 384 bits, which is like a six channel CPU architecture).

The way we do things in Kepler: GPUs launch their own kernels

The pre-Kepler GPU is a co-processor **GPU** CPU

Now programs run faster and are expressed in a more natural way.

Example 1: Dynamic work generation

Assign resources dynamically according to real-time demand, making easier the computation of irregular problems on GPU.

It broadens the application scope where it can be useful.

Fine grid

Higher performance, lower accuracy

NVIDIA

Lower performance, higher accuracy

Dynamic grid

Target performance where accuracy is required

Manuel Ujaldon - Nvidia CUDA Fellow

Example 2: Deploying parallelism based on level of detail

NVIDIA

5.2. Hyper-Q

Hyper-Q

NVIDIA

In Fermi, several CPU processes can send thread blocks to the same GPU, but a kernel cannot start its execution until the previous one has finished.

In Kepler, we can execute simultaneously up to 32 kernels launched from different:

MPI processes, CPU threads (POSIX threads) or CUDA streams.

This increments the % of temporal occupancy on the GPU.

An example: 3 streams, each composed of 3 kernels

```
global kernel A(pars) {body} // Same for B...Z
                                                                  stream_1
   cudaStream t stream 1, stream 2, stream 3;
                                                                   kernel_A
   . . .
                                                                   kernel_B
   cudaStreamCreatewithFlags(&stream 1, ...);
                                                                   kernel_C
   cudaStreamCreatewithFlags(&stream 2, ...);
   cudaStreamCreatewithFlags(&stream_3, ...);
                                                                  stream_2
   kernel A <<< dimgridA, dimblockA, 0, stream 1 >>> (pars);
stream
                                                                   kernel P
   kernel B <<< dimgridB, dimblockB, 0, stream 1 >>> (pars);
   kernel C <<< dimgridC, dimblockC, 0, stream 1 >>> (pars);
                                                                   kernel_Q
   . . .
                                                                   kernel_R
N
   kernel P <<< dimgridP, dimblockP, 0, stream 2 >>> (pars);
stream
   kernel Q <<< dimgridQ, dimblockQ, 0, stream_2 >>> (pars);
   kernel R <<< dimgridR, dimblockR, 0, stream 2 >>> (pars);
                                                                  stream_3
                                                                   kernel X
M
   kernel X <<< dimgridX, dimblockX, 0, stream 3 >>> (pars);
stream
                                                                   kernel_Y
   kernel Y <<< dimgridY, dimblockY, 0, stream 3 >>> (pars);
                                                                   kernel_Z
   kernel Z <<< dimgridZ, dimblockZ, 0, stream 3 >>> (pars);
```


Grid management unit: Fermi vs. Kepler

Fermi

Kepler GK110

The relation between software and hardware queues

The relation between software and hardware queues

Without Hyper-Q: Multiprocess by temporal division

With Hyper-Q: Symultaneous multiprocess

6. A look-ahead to next generations

Overview of CUDA hardware generations

6.1. The warp size

The way each multiprocessor swallows SIMD instructions

A hypothetical GPU front-end with the warp size increased to 64

ЯΜХ									tructi	on Car	he									
	Wa	rp Sch	eduler			W	arp Sched	uler			Wa	rp Sch	eduler			w	irp Sched	uler		
Disp	patch Un		Dispatch	Unit	Dis	patch U	nit C	Sispatch	Unit	Dis	patch Ur	•	Dispatch	Unit	Dis	ipatch U	nit I	Dispatch	Unit	
							R	egister	File (65,536	× 32-t	oit)								
+	-	-	-	-	-	-	DRUM	10.97	-	-	+ Corre	-	PR II-	-	-	-	DRUIN	-	+	
ore	Core	Core		Core	Core	Gore	CP CHI	corar	aru	Core	Gone	Core	OF ONE	Cone	Core	Cone	CH- Chill	LUSI	SPU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	

O,

NVIDIA

Manuel Ujaldon - Nvidia CUDA Fellow

The way each multiprocessor would swallow SIMD instructions using a warp size of 64

- The cost for the control unit is just the half.
- The penalty due to data dependencies is potentially lower, and the hardware is more simple.
- The penalty due to control dependencies is higher.

		v 5ch	eduler -				v Sched	uler			w	-	5			w		-	
Dis	-		Departs	94		aparticite 10		Chapter &	Unit I	Dis	-		Deputation	-		-		Ciapate 1	244
	Register File (65,536 x 32-bit)																		
							+	-	٠	-			+				+	-	
Cont	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOST	sru	Con	Con	Core	DP Unit	Con	Con	Core	DP Unit	LDAT	sru
Com	Cone	Com	DP Unit	Com	Core	Core	DP Unit	LOST	SFU	Core	Core	Core	DP Lint	Core	Core	Core	DP Line	LDST	sru
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDST	seu	Core	Core	Core	DP Unit	Com	Com	Core	DP U=H	LINET	sru
Core	Core	Core		Core	Core	Core	DP Unit	LOST	1FU	Core	Core	Core	DP Line	Com	Core	Core	DP Unit	LONT	SFU
Core	Core	Core	CP Unit	Core	Core	Core	CP Unit	LDIST	570	Core	Core	Core	DP Link	Con	Core	Core	DP Line	LONT	sru
Cere	Core	Core	DP Line	Core	Com	Core	DP-U-M	LOST	SFU	Core	Core	Core	DP Unit	Com	Com	Core	DP Unit	LINET	aru
Core	Core	Core	OP UH	Core	Core	Core	DP Unit	LOWT	sru	Core	Core	Core	DP LINE	Con	Core	Core	DP Unit	LOST	sru
Con	Con	Core	DP Link	Core	Com	Core	DF Unit	LOST	890	Core	Cera	Core	DP Line	Con	Core	Core	DP Unit	LOWT	sru
Cere	Com	Core		Con	Com	Cons	DP Unit	LOST	sfu	Con	Con	Core	-	Con	Core	Core	DP Unit	LOST	SFU
Core	Core	Core		Core	Core	Core	DP Unit	LOST	5 7 U	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LINT	sru
Core	Core	Core	DP Los	Com	Care	Core	DP LINE	LDST	sru	Core	Cere	Care	DP LINE	Con	Core	Core	SP Link	LOST	SFU
Core	Core	Core		Com	Core	Core	CP Line	LUST	sru	Core	Core	Core	DP Link	Core	Core	Core	Diff Link	LOST	sru
Core	Core	Core	DP LINE	Core	Core	Core		LOST	1FU	Core	Core	Core	-	Cere	Core	Core	DP Los	LOWT	\$FU
Con	Core	Core		Core	Core	Cone	DP Use	LOIST	sru	Core	Core	Core	DP LINE	Core	Core	Core	DP Unit	LDST	sru
Con	Core	Core	-	Core	Core	Core		LOWT	sfu	Com	Core	Core		Com	Core	Core	DF Unit	LINST	90
Core	Care	Core		Cere	Core	Core	20° 1.44	LOST	SFU	Core	Core	Core		Com	Com	Core	Der Lask	LOW	sFU
-	Interconnect National 64 KB Strand Memory / L1 Cache																		
	48 KB Read Only Cathe																		
	Tex		Tex	ŧ		Тех		Tex		Tex			Tex		Тех		Tex		
Тек			Tex			Тех		Tex		Tex			Tex			Tex		Tex	

Kepler

The GPU back-end: Transforming the SMX for a warp size of 64

SMX	SMX																			
	Instruction Cache																			
Warp Scheduler						Warp Scheduler						rp Sch	eduler	-	Warp Scheduler					
Dist	patch Ui		Dispatch	UNE	Dispatch Unit Dispatch Unit						patch Us		Dispatch	Unit	Dis	spatch U		Aspatch	Unit	
Register File (65,536 x 32-bit)																				
+	÷	+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	Core	Core	Gore	DP Unit	Core	Core	Gore	DP Unit	LC/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	
Core	Core	Gore	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU	
90000	Interconnect Network 64 KB Shared Memory / L1 Cache																			
	48 KB Read-Only Cache																			
	Tex		Tex	:		Tex		Tex			Tex	I	Tex			Tex		Tex		
	Tex		Tex	l.		Tex		Tex			Tex		Tex			Tex		Tex		

Functional Unit	#	warp size = 32	warp size = 64
int/fp32	192	6	3
fp64 DP Unit	64	2	1
load/store	32	1	1/2
SFU SFU	32	1	1/2

The deficit lies in load/store and SFUs, but they were facing a tougher constraint during the Fermi generation, and they were able to recover from that.

Other facts promoting the warp size to 64

- Shared memory: Concurrency attained through banks, and they were already increased from 16 (pre-Fermi) to 32.
- Device memory: Higher data bandwidth is required, but that is not the problem in the DDR saga (latency is).
- Branching: Techniques minimizing penalties on divergent branches are more mature and ready to face the challenge.
- Scalability in the number of cores: Simplicity in the control unit would allow to increase cores of every kind.
- Nvidia is anticipating this move with a warning.
- Other vendors are moving in the same direction:
 - Graphics Core Next (GCN) from AMD is a 4 x 16-wide vector SIMD.

To benefit from this technological change

Make blocks bigger:

- Less than 64 threads per block is forbidden.
- 256 would now be the minimum required.
- 384 gains momentum.

Pay more attention to warp divergencies.

Advantageous for regular computations. Sophistication of hardware scheduler (Hyper-Q, dynamic parallelism) lifts irregular applications.

How it would be Kepler with a warp size of 64

SMX in Kepler: 512 parallel functional units

If we take for granted that Nvidia uses to "complete" to a warps enteros las Unidades Funcionales en la siguiente generación, verde y azul aumentarían, y el parecido de Kepler64 con el Tetris del video-juego sería asombroso.

6.2. Stacked (3D) DRAM

69

NVIDIA

A 2017 graphics card: Pascal GPU with Stacked DRAM

70

Manuel Ujaldon - Nvidia CUDA Fellow

Details on silicon integration

DRAM cells are organized in vaults, which take borrowed the interleaved memory arrays from already existing DRAM chips.

A logic controller is placed at the base of the DRAM layers, with data matrices on top.

The assembly is connected with through-silicon vias, TSVs, which traverse vertically the stack using pitches between 4 and 50 um.

For a pitch of 10 um., a 1024-bit bus (16 memory channels) requires a **die size** of 0.32 mm2, which barely represents 0.2% of a CPU die (160 mm2).

Vertical latency to traverse the height of a Stacked DRAM endowed with 20 layers is only **12 picosecs**.

The final step is advanced package assembly of vaults, layers and TSVs. This prevents parasitic capacitances which reduce signal speed and increase power required to switch.

A comparative in bandwidth with existing technologies

- On a CPU system (PC with a 4-channel motherboard, 256 bits):
 - [2013] DDR3 @ 4 GHz (2x 2000 MHz): 128 Gbytes/s.
 - [2014] A CPU with HMC 1.0 (first generation): 320 Gbytes/s. on each dir.
 - [2015] A CPU with HMC 2.0 (second generation): 448 Gbytes/s.
- On a GPU system (384-bits wide graphics card):
 - [2013] A GPU with GDDR5 @ 7 GHz (2x 3500 MHz): 336 Gbytes/s.
 - [2014] A GPU with 12 chips of 32 bits manuf. using near memory HMC 1.0 would reach **480 Gbytes/s.** (6 channels HMC 1.0 @ 80 GB/s. each).
 - [2015] A GPU using HMC 2.0 (112 GB/s.) would reach 672 Gbytes/s., which doubles the bandwidth with respect to the most advanced GDDR technology in 2013.

(*) Taking the bandwidth estimations given by HMCC 1.0 y 2.0 (20 and 28 GB/s. respectively on each 16-bit link for each direction). Nvidia already confirmed in GTC'13 data bandwidths around 1 TB/s. for its Pascal GPU.

6.3. Analysis based on the roofline model

Impact on GPUs: Analysis based on the roofline model

The Roofline model: Hardware vs. Software

The Roofline model: Software evolution. Case study: FMM (Fast Multipole Method)

Concluding remarks

- Kepler represents the architectural design for 2013-2014, ready to host thousands of cores on a single die.
- Deploys all types of parallelism: Task (threads), instruction (pipelines), data (SIMD) and vectorial (warps).
- Enhances power consumption and programmability, improving CUDA for irregular and dynamic applications.
- The GPU is more autonomous, but at the same time allows more interaction with the CPU.
- The memory hierarchy improves significantly, as well as the connection among GPUs.
- SMX-DRAM interconnect will be crucial in future designs.

Thanks for coming!

You can always reach me in Spain at the Computer Architecture Department of the University of Malaga:

e-mail: <u>ujaldon@uma.es</u>

Phone: +34 952 13 28 24.

Web page: <u>http://manuel.ujaldon.es</u> (english/spanish versions available).

Or, more specifically on GPUs, visit my web page as Nvidia CUDA Fellow:

http://research.nvidia.com/users/manuel-ujaldon

