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``... and if software people wants good machines, 

they must learn more about hardware to influence 

that way hardware designers ...´´

David A. Patterson  &  John Hennessy
Organization and Computer Design

Mc-Graw-Hill (1995)
Chapter 9, page 569

2

2



Talk outline [63 slides]

1. Introducing the architecture [4 slides]
2. The memory [3]
3. The SMX cores [9]
4. How the SMX works: Front-end and back-end [21]
5. Functional enhancements [11]

1. Dynamic parallelism [5]
2. Hyper-Q [6]

6. A look to the future [15] 
1. Vectorization: The warp size [7]
2. Stacked-DRAM: 3D memory on top of the GPU [4]
3. Analysis based on the roofline model [4]
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1. Introducing 
the architecture
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The three pillars of Kepler
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Performance

Programmability

Power consumption
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And its three basic innovations
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Dynamic 
parallelism:

Hyper-Q:

SMX: A multiprocessor with more 
resources and less power.

The GPU is autonomous, 
can launch CUDA kernels.

Multiple kernels can share 
the SMXs.
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SMX Balance of Resources:
Summary of improvements versus Fermi
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Resource Kepler GK110 vs. Fermi GF100

Floating-point throughput
Maximum number of blocks per SMX
Maximum number of threads per SMX
Register file bandwidth
Register file capacity
Shared memory bandwidth
Shared memory capacity
L2 bandwidth
L2 cache capacity

2-3x
2x

1.3x
2x
2x
2x
1x
2x
2x
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Commercial models available for Kepler:
GeForce vs. Tesla

Designed for gamers:
Price is a priority (<500€).
Availability and popularity.
Little video memory (1-2 GB.).
Frequency slightly ahead.
Hyper-Q only for CUDA streams.
Perfect for developing code  

which can later run on a Tesla.

8

Oriented to HPC:
Reliable (3 year warranty).
For cluster deployment.
More video memory (6-12 GB.).
Tested for endless run (24/7).
Hyper-Q for MPI.
GPUDirect (RDMA) and other 

features for GPU clusters.

GeForce GTX Titan
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2. Memory
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The memory in Tesla cards: Fermi vs. Kepler
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Tesla card M2075 M2090 K20 K20X K40

32-bit register file / multiprocessor

L1 cache + shared memory size

Width of 32 shared memory banks

SRAM clock freq. (same as GPU)

L1 and shared memory bandwidth

L2 cache size

L2 cache bandwidth (bytes/cycle)

L2 on atomic ops. (shared address)

L2 on atomic ops. (indep. address)

DRAM memory width

DRAM memory clock (MHz)

DRAM bandwidth (ECC off)

DRAM memory size (all GDDR5)

External bus to connect to CPU

32768 32768 65536 65536 65536

64 KB. 64 KB. 64 KB. 64 KB. 64 KB.

32 bits 32 bits 64 bits 64 bits 64 bits

575 MHz 650 MHz 706 MHz 732 MHz 745,810,875 MHz

73.6 GB/s. 83.2 GB/s. 180.7 GB/s 187.3 GB/s 216.2 GB/s.

768 KB. 768 KB. 1.25 MB. 1.5 MB. 1.5 MB.

384 384 1024 1024 1024

1/9 per clk 1/9 per clk 1 per clk 1 per clk 1 per clk

24 per clk 24 per clk 64 per clk 64 per clk 64 per clk

384 bits 384 bits 320 bits 384 bits 384 bits

2x 1500 2x 1850 2x 2600 2x 2600 2 x 3000

144 GB/s. 177 GB/s. 208 GB/s. 250 GB/s. 288 GB/s.

6 GB. 6 GB. 5 GB. 6 GB. 12 GB.

PCI-e 2.0 PCI-e 2.0 PCI-e 3.0 PCI-e 3.0 PCI-e 3.0
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Differences in memory hierarchy:
Fermi vs. Kepler
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The memory hierarchy in numbers
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All Fermi and Kepler models are endowed with:
ECC (Error Correction Code) in the video memory controller.
Address bus 64 bits wide.
Data bus 64 bits wide for each memory controller (few models 

include 4 controllers for 256 bits, most have 6 controllers for 384 bits)

GPU generation

Hardware model

CUDA Compute Capability (CCC)

FermiFermi KeplerKepler
Limi-
tation ImpactGF100 GF104 GK104 GK110 Limi-
tation Impact

2.0 2.1 3.0 3.5

Limi-
tation Impact

Max. 32 bits registers / thread

32 bits registers / Multiprocessor

Shared memory / Multiprocessor

L1 cache / Multiprocessor

L2 cache / GPU

63 63 63 255 SW. Working set

32 K 32 K 64 K 64 K HW. Working set

16-48KB 16-48KB 16-32-48KB 16-32-48 KB HW. Tile size

48-16KB 48-16KB 48-32-16KB 48-32-16 KB HW. Access 
speed

768 KB. 768 KB. 768 KB. 1536 KB. HW. Access 
speed
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3. The SMX cores
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A brief reminder of what CUDA is about
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···

· · · · · · · · ·

· · · · · · · · ·

··· ··· ···

··· ··· ···

··· ··· ···

Thread

Thread block

Grid 0

Grid 1

On-chip 
memory

Memory 
outside the 
GPU chip      
(but within the 
graphics card)
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... and how the architecture scales up
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Architecture

Time frame

CUDA Compute 
Capability (CCC)

TeslaTesla FermiFermi KeplerKeplerKeplerKepler

G80 GT200 GF100 GF104 GK104
(K10)

GK110
(K20)

GK110 
(K40)

GeForce 
GTX 

Titan Z

2006-07 2008-09 2010 2011 2012 2013 2013-14 2014

1.0 1.2 2.0 2.1 3.0 3.5 3.5 3.5

N (multiprocs.)

M (cores/multip.)

Number of cores

16 30 16 7 8 14 15 30

8 8 32 48 192 192 192 192

128 240 512 336 1536 2688 2880 5760
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Kepler in perspective: 
Hardware resources and peak performance
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Tesla card (commercial model)

Similar GeForce model in cores

GPU generation (and CCC)

M2075 M2090 K20 K20X K40

GTX 470 GTX 580 - GTX Titan GTX Titan Z (x2)

Fermi GF100 (2.0)Fermi GF100 (2.0) Kepler GK110 (3.5)Kepler GK110 (3.5)Kepler GK110 (3.5)

Multiprocessors x (cores/multipr.)

Total number of cores

Type of multiprocessor

Transistors manufacturing process

GPU clock frequency (for graphics)

Core clock frequency (for GPGPU)

Number of single precision cores

GFLOPS (peak single precision)

Number of double precision cores

GFLOPS (peak double precision)

14 x 32 16 x 32 13 x 192 14 x 192 15 x 192

448 512 2496 2688 2880

SMSM SMX with dynamic paralelism and HyperQSMX with dynamic paralelism and HyperQSMX with dynamic paralelism and HyperQ

40 nm. 40 nm. 28 nm. 28 nm. 28 nm.

575 MHz 650 MHz 706 MHz 732 MHz 745,810,875 MHz

1150 MHz 1300 MHz 706 MHz  732 MHz 745,810,875 MHz

448 512 2496 2688 2880

1030 1331 3520 3950 4290

224 256 832 896 960

515 665 1170 1310 1680
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The new GeForce GTX Titan Z

5760 cores (2x K40).
Video memory: 12 Gbytes.
Peak performance: 8 TeraFLOPS.
Starting price: $2999.
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GPU Boost

Allows to speed-up the GPU clock up to 17% if the power 
required by an application is low.

The base clock will be restored if we exceed 235 W.
We can set up a persistent mode which keep values 

permanently, or another one for a single run.
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Power Headroom
Performance

Highest Boost ClockBase Clock

Maximizes Graphics Clocks within 
the specified power envelope

745 MHz 810 MHz 875 MHz
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Every application has a different behaviour 
regarding power consumption

Here we see the average power (watts) on a Tesla K20X 
for a set of popular applications within the HPC field:
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Those applications which are less power 
hungry can benefit from a higher clock rate

For the Tesla K40 case, 3 clocks are defined, 8.7% apart.
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Base 
clock

Workload #1
Worst case 
Reference App

235W

Boosted 
clock #1

Workload #2
 E.g. AMBER

235W

Boosted 
clock #2

Workload #3 
E.g. ANSYS Fluent

235W

875 MHz

810 MHz

745 MHz

Up to 40% higher 
performance relative 
to Tesla K20X.

And not only GFLOPS are 
improved, but also effective 
memory bandwidth.
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GPU Boost compared to other approaches

It is better a stationary state for the frequency to avoid 
thermal stress and improve reliability. 
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GPU 
clock

Automatic clock switching

Boost Clock # 1

Boost Clock # 2

Tesla K40

Deterministic Clocks

Base Clock # 1

Other vendors

Other vendors Tesla K40

Default

Preset options

Boost interface

Target duration for boosts

Boost Base

Lock to base clock 3 levels: Base, Boost1 o Boost2

Control panel Shell command:  nv-smi

Roughly 50% of run-time 100% of workload run time
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GPU Boost - List of commands
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Command Effect

nvidia-smi -q -d SUPPORTED_CLOCKS

nvidia-smi -ac <MEM clock, 
Graphics clock>

nvidia-smi -pm 1

nvidia-smi -pm 0

nvidia-smi -q -d CLOCK

nvidia-smi -rac

nvidia-smi -acp 0

View the clocks supported by our GPU 

Set one of the supported clocks

Enables persistent mode: The clock settings are 
preserved after restarting the system or driver

Enables non-persistent mode: Clock settings revert 
to base clocks after restarting the system or driver

Query the clock in use

Reset clocks back to the base clock

Allow non-root users to change clock rates
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Example: Query the clock in use

nvidia-smi -q -d CLOCK —id=0000:86:00.0

23
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4. How the SMX works: 
Front-end and back-end

24



Kepler GK110: Physical layout of functional 
units for the Tesla K40 (endowed with 15 SMX)
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The SMX multiprocessor
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Front-endInstruction scheduling 
and issuing in warps

Instructions execution.
512 functional units:
- 192 for ALUs.
- 192 for FPUs S.P.
- 64 for FPUs D.P.
- 32 for load/store.
- 32 for SFUs (log,sqrt, ...)

Memory access

Back-end

Interface
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From SM multiprocessor in Fermi GF100 
to SMX multiprocessor in Kepler GK110

27

Front-end

Back-end
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A comparison between instructions issue 
and execution (front-end vs. back-end)

In Kepler, each SMX can issue 8 warp-instructions per cycle, but due 
to resources and dependencies limitations:

7 is the sustainable peak.
4-5 is a good amount for instruction-limited codes.
<4 in memory- or latency-bound codes.

28

SM-SMX fetch & issue (front-end) SM-SMX execution (back-end)

Fermi (GF100)

Kepler (GK110)

Can issue 2 warps, 1 instruction each.
Total: Up to 2 warps per cycle.
Active warps: 48 on each SM, 
chosen from up to 8 blocks.
In GTX580: 16 * 48 = 768 active warps.

32 cores [1 warp] for "int" and "float". 
16 cores for "double" [1/2 warp].
16 load/store units [1/2 warp].
4 special function units [1/8 warp].
A total of up to 5 concurrent warps.

Can issue 4 warps, 2 instructions each.
Total: Up to 8 warps per cycle.
Active warps: 64 on each SMX, 
chosen from up to 16 blocks.
In K40: 15 * 64 = 960 active warps.

192 cores [6 warps] for "int" and "float".
64 cores for "double" [2 warps].
32 load/store units [1 warp].
32 special function units [1 warp].
A total of up to 16 concurrent warps.
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The way GigaThread scheduling works

Each grid provides a number of blocks, which are assigned 
to SMXs (up to 16 blocks per SMX in Kepler, 8 in Fermi).

Blocks are split into warps (groups) of 32 threads.
Warps are issued for each instruction in kernel threads (up 

to 64 active warps in Kepler, 48 in Fermi). Example:

29
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Increasing concurrency
and massive parallelism

30

GPU generation

Hardware model

CUDA Compute Capability (CCC)

FermiFermi KeplerKepler

GF100 GF104 GK104 GK110

2.0 2.1 3.0 3.5

Number of threads / warp (warp size)

Max. number of warps / Multiprocessor

Max. number of blocks / Multiprocessor

Max. number of threads / Block

Max. number of threads / Multiprocessor

32 32 32 32

48 48 64 64

8 8 16 16

1024 1024 1024 1024

1536 1536 2048 2048

Crucial enhancements
for hiding latencies Max. concurrency

   on each SMX
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Express as much parallelism as possible:
SMXs (Kepler) are wider than SMs (Fermi)

Example: Kernel with blocks of 384 threads (12 warps).
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Tetris (tile = warp_instr.):
- Issues 4 warp_instrs.
- Executes up to 10 warps = 
320 threads.
- Warp_instrs. are symmetric 
and executed all in one cycle.

   Issues 4 
warp_instrs.

Executes up to 10 warp_instrs.

The player is the GPU scheduler!
You can rotate moving pieces if 
there are no data dependencies.

instr.

...

...

...

...

...

Block 0: Block 1:

warp
for instructions using “int”.

“double”.

“load/store”.

“log/sqrt...”.

for instrs. using “float”.

Color code:

100 functional units

SM in

Fermi:
- Issues 2.
- Executes 
up to 5.

Fermi:

G80: Takes 
4 cycles for 
executing
each
warp_instrs.

G80:
16 U.F.

sub
fmadd
fdiv64
load
sqrt

Kepler:
- Issues 4 warps x 2 instructions.
- Executes up to 16 warp_instrs.
(up to 512 functional units in parallel)

SMX (Kepler): 512 functional units

6x32 = 192 ALUs    192 SP FPU

64 DP FPU

32 LD/ST

32 SFU
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Thread Level Parallelism (TLP) and 
Instruction Level Parallelism (ILP)
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...

...

...

...

...

Increase
parallelism
vertically
via ILP:
Using more
independent 
instructions.

Increase parallelism horizontally via TLP: 
More concurrent warps (larger blocks and/or more active blocks per SMX).

SMXs can leverage available ILP interchangeably with TLP:
It is much better at this than Fermi.

Sometimes is easier to increase ILP than TLP (for 
example, a small loop unrolling):

 # of threads may be limited by algorithm or HW limits.

We need ILP for attaining a high IPC (Instrs. Per Cycle).
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3: Data par. (SIMD)

Kepler GPUs can hold together all 
forms of parallelism. Example: K40.

33

Imagine a 3D tetris with 15 boxes and up to 64 pieces 
falling down simultaneously on each of them, because that 
is the way K40 works when all parallelism is deployed.

1: Thread-level parallelism (TLP)

2:
 I

ns
tr

s.
 (

IL
P)

...

...

...

...

...

SMX 0
...
...

...

...

...

4: Vectorial (warp = 32)

SMX 15
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...
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The K40 can schedule up to
64x15 warps in a single cycle:
30720 threads in 1.14 ns.All this volume represents 60x15 warps!
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Base strategy:
We launch a CUDA kernel for each matrix column.
Each kernel will have the lowest number of blocks.
Each kernel will have the largest number of warps.

3: Data par. (SIMD)

A quick introduction to our hands-on

34

1: Thred-level parallelism (TLP)

2:
 I

ns
tr

s.
 (

IL
P)

4: Vectorial (warp = 32) Our code traverses the whole matrix, 
performing operations independently 
on each element.

Sparse matrices processing
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A quick introduction to our hands-on (2)

35

int float double values[numelements];
for all elements assigned to each thread:
  for numops. to be done on each element
    values[i] *= values[i];
  

Sparse matrices processing

int

int float double

SMX in Kepler: 512 parallel functional units

6x32 = 192 ALUs    192 SP FPU

64 DP FPU

32 LD/ST

32 SFU

Changing the operator to lighter (addition) 
or heavier (division) will also have an impact 
depending on the latency to carry out that 
operation.
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Case study: Zernike moments

Fermi is more balanced in this case.
With the resources distribution in Kepler, the execution of 

integer arithmetic improves, but the floating-point arithmetic 
and the load/store worsens. All the others are not used.

36

GPU 
resources ALU 32-bits FPU 64-bits FPU Load/store SFU

Fermi

Kepler

Kernel for 
Zernike

Better

32% 32% 16% 16% 4%

37.5% 37.5% 12.5% 6.25% 6.25%

54% 21% 0% 25% 0%

Kepler Fermi Kepler Fermi Fermi
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Use the CUDA Visual Profiler to know how 
good your application adapts to resources
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The way the GPU front-end works:
(1) How warps are scheduled

38SM (Fermi) SMX (Kepler)
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The interface between front-end & back-end:
(2) How warps are issued

39
SM (Fermi) SMX (Kepler)

In the 5 cycles shown, we could have executed all this work.
 In Fermi, there is a deficit in SFUs (blue), whereas in Kepler, the 

deficit goes to load/store units (green). 
Kepler balances double precision (red) and has a good surplus in   

“int” and “float” computations, an evidence that real codes have       
more presence of orange and, overall, yellow instructions.
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The way the GPU back-end works:
(3) Warps execution

40
SM (Fermi) SMX (Kepler)

Let us assume that when we start the execution there are 
few warps pending to be executed:

 Two single precision warps (orange).
 Two double precision warps (red).

Looks like that it is smart for the front-end to work 
ahead of the back-end (prefetching) in order to 
mazimize throughput.
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In Fermi, red tiles are not allowed to be combined with others.
In Kepler, we cannot take 8 warp_instrs. horizontally, bricks must 

have a minimum height of 2.
Instructions have different latency, so those consuming more   

than one cycle (i.e. double precision floating-point) should       
expand vertically.

In case the warp suffers from divergencies, it will consume two 
cycles, not one. We can extend it vertically like in the previous case. 

Real codes have a mayority of yellow tiles (“int” predominates).
Some bricks are incomplete, because the warp scheduler cannot 

find a 4x2 structure free of dependencies.
Bricks can assemble tiles which are not contiguous.

Some remarks about the “tetris” model
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Warps latency

Even if all tiles be executed in one cycle, warps duration 
would not be that one. The time elapsed by a warp within 
the GPU is the addition of three:

Scheduling time.
Issuing time.
Execution time.

Scheduling/execution are quite regular, but issuing is not: 
It depends on tiles piled up at the bottom of the bucket 
(reserve stations). That is what explains the variance of its 
duration.  

42
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The warps behaviour teaches us that the 
GPU is not a regular processor at all

 Unpredictable factors at run-time pose a challenge for the 
workload balance among multiprocessors. Here is an 
example of the variance for the last 8 warps executed on 
each multiprocessor of a G80 GPU:
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5. Functional improvements
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5.1. Dynamic parallelism
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The ability to launch new grids from the GPU:
Dynamically: Based on run-time data.
Simultaneously: From multiple threads at once.
Independently: Each thread can launch a different grid.

What is dynamic parallelism?

46

Fermi: Only CPU 
can generate GPU work.

Kepler: GPU can 
generate work for itself.

CPU GPU CPU GPU
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The way we did things in the pre-Kepler era:
The GPU was a slave for the CPU

High data bandwidth for communications:
External: More than 10 GB/s (PCI-express 3).
Internal: More than 100 GB/s (GDDR5 video memory and 384 bits, 

which is like a six channel CPU architecture).

47

Operation 1 Operation 2 Operation 3

Init

Alloc

Function Lib Lib Function Function

CPU

GPU
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CPU GPU CPU GPU

The pre-Kepler GPU is a co-processor

Now programs run faster and

The way we do things in Kepler:
GPUs launch their own kernels

The Kepler GPU is autonomous: 
Dynamic parallelism

are expressed in a more natural way.
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Assign resources dynamically according to real-time 
demand, making easier the computation of irregular 
problems on GPU.

It broadens the application scope where it can be useful.

Example 1: Dynamic work generation

49

Coarse grid Fine grid Dynamic grid

Higher performance, 
lower accuracy

Target performance 
where accuracy is required

Lower performance, 
higher accuracy
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Example 2: Deploying
parallelism based on level of detail 

50

CUDA until 2012:
• The CPU launches 
kernels regularly.
• All pixels are treated 
the same.

CUDA on Kepler:
• The GPU launches a 
different number of 
kernels/blocks for each 
computational region.

Computational power
allocated to regions 

of interest
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5.2. Hyper-Q
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In Fermi, several CPU processes can send thread blocks to 
the same GPU, but a kernel cannot start its execution until 
the previous one has finished.

In Kepler, we can execute simultaneously up to 32 kernels 
launched from different:

 MPI processes, CPU threads (POSIX threads) or CUDA streams.

This increments the % of temporal occupancy on the GPU.

Hyper-Q

52

FERMI
1 MPI Task at a Time

KEPLER
32 Simultaneous MPI Tasks 
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An example: 
3 streams, each composed of 3 kernels

53

__global__ kernel_A(pars) {body} // Same for B...Z
cudaStream_t stream_1, stream_2, stream_3;
...
cudaStreamCreatewithFlags(&stream_1, ...);
cudaStreamCreatewithFlags(&stream_2, ...);
cudaStreamCreatewithFlags(&stream_3, ...);
...
kernel_A <<< dimgridA, dimblockA, 0, stream_1 >>> (pars);
kernel_B <<< dimgridB, dimblockB, 0, stream_1 >>> (pars);
kernel_C <<< dimgridC, dimblockC, 0, stream_1 >>> (pars);
...
kernel_P <<< dimgridP, dimblockP, 0, stream_2 >>> (pars);
kernel_Q <<< dimgridQ, dimblockQ, 0, stream_2 >>> (pars);
kernel_R <<< dimgridR, dimblockR, 0, stream_2 >>> (pars);
...
kernel_X <<< dimgridX, dimblockX, 0, stream_3 >>> (pars);
kernel_Y <<< dimgridY, dimblockY, 0, stream_3 >>> (pars);
kernel_Z <<< dimgridZ, dimblockZ, 0, stream_3 >>> (pars);

st
re

a
m

 1

stream_1

kernel_A

kernel_B

kernel_C

stream_2

kernel_P

kernel_Q

kernel_R

stream_3

kernel_X

kernel_Y

kernel_Z

st
re

a
m

 2
st

re
a
m

 3
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Work Distributor
Tracks blocks issued from grids

16 active grids

Stream Queue 
(ordered queues of grids)

Kernel C

Kernel B

Kernel A

Kernel Z

Kernel Y

Kernel X

Kernel R

Kernel Q

Kernel P

Stream 1 Stream 2 Stream 3

Grid management unit: Fermi vs. Kepler
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Work Distributor
Actively dispatching grids

32 active grids

Stream Queue
C

B

A

R

Q

P

Z

Y

X

Grid Management Unit
Pending & Suspended Grids

1000s of pending grids

SMX SMX SMX SMXSM SM SM SM

Fermi Kepler GK110

CU
D

A 
G

en
er

at
ed

 W
or

k

Single hardware queue
multiplexing streams

Parallel hardware streams

Allows suspending of grids
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The relation between 
software and hardware queues

55

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

Chances for overlapping: Only at stream edges

A--B--C   P--Q--R   X--Y--Z
Up to 16 grids

can run at once
on GPU hardware

But CUDA streams multiplex into a single queue
Fermi:
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The relation between
software and hardware queues

56

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

Chances for overlapping: Only at stream edges

A--B--C   P--Q--R   X--Y--Z
Up to 16 grids

can run at once
on GPU hardware

But CUDA streams multiplex into a single queue
Fermi:

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3Concurrency at full-stream level

P--Q--R
Up to 32 grids

can run at once
on GPU hardware

No inter-stream dependenciesKepler:

A--B--C

X--Y--Z
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...mapped on GPU 57
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CPU processes...

Without Hyper-Q: Multiprocess by temporal division
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6. A look-ahead to next generations
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Overview of CUDA hardware generations
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20
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2010 2012 2014 2016

Maxwell

Pascal

CUDA
FP64

Dynamic Parallelism

DX12

Unified memory
3D Memory
NVLink
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6.1. The warp size
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The way each multiprocessor
swallows SIMD instructions

61

CU
Instr. 1

Fermi Kepler

Block
Instr. 2

Instr. 3
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A hypothetical GPU front-end 
with the warp size increased to 64
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Warp scheduler

Dispatch Unit Dispatch Unit

Warp scheduler

Dispatch Unit Dispatch Unit
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The way each multiprocessor would swallow 
SIMD instructions using a warp size of 64
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CU
Instr. 1

Kepler

Instr. 2

The cost for the control unit is 
just the half.

The penalty due to data 
dependencies is potentially lower, 
and the hardware is more simple.

The penalty due to control 
dependencies is higher.
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The GPU back-end:
Transforming the SMX for a warp size of 64 

64

Functional 
Unit # warp size 

= 32
warp size 

= 64

int/fp32

fp64

load/store

SFU

192 6 3

64 2 1

32 1 1/2

32 1 1/2

The deficit lies in load/store 
and SFUs, but they were facing 
a tougher constraint during the 
Fermi generation, and they 
were able to recover from that. 
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Other facts promoting the warp size to 64

Shared memory: Concurrency attained through banks, 
and they were already increased from 16 (pre-Fermi) to 32.

Device memory: Higher data bandwidth is required, but 
that is not the problem in the DDR saga (latency is).

Branching: Techniques minimizing penalties on divergent 
branches are more mature and ready to face the challenge.

Scalability in the number of cores: Simplicity in the 
control unit would allow to increase cores of every kind.

Nvidia is anticipating this move with a warning.
Other vendors are moving in the same direction:

Graphics Core Next (GCN) from AMD is a 4 x 16-wide vector SIMD.
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To benefit from this technological change

Make blocks bigger:
Less than 64 threads per block is forbidden.
256 would now be the minimum required.
384 gains momentum.

Pay more attention to warp divergencies.
Advantageous for regular computations. Sophistication of 

hardware scheduler (Hyper-Q, dynamic parallelism) lifts 
irregular applications.
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 If we take for granted that Nvidia uses to “complete” to a 
warps enteros las Unidades Funcionales en la siguiente 
generación, verde y azul aumentarían, y el parecido de 
Kepler64 con el Tetris del video-juego sería asombroso.

How it would be Kepler with a warp size of 64

67

Kepler32:
- Issues 4 warps x 2 instrs.
- Executes up to 16 warp_instrs.
  (512 functional units).

SMX in Kepler: 512 parallel functional units 

6x32 = 192 ALUs    192 SP FPU

64 DP FPU

32 LD/ST

32 SFU

Kepler64:
- Issues 4 warps.
- Executes up to 8.
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6.2. Stacked (3D) DRAM
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A 2013 graphics card:
Kepler GPU with GDDR5 video memory
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A 2017 graphics card:
Pascal GPU with Stacked DRAM
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Details on silicon integration

DRAM cells are organized in vaults, which take 
borrowed the interleaved memory arrays from already 
existing DRAM chips.

A logic controller is placed at the base of the DRAM 
layers, with data matrices on top.

The assembly is connected with through-silicon 
vias, TSVs, which traverse vertically the stack using 
pitches between 4 and 50 um.

For a pitch of 10 um., a 1024-bit bus (16 memory 
channels) requires a die size of 0.32 mm2, which barely 
represents 0.2% of a CPU die (160 mm2).

Vertical latency to traverse the height of a Stacked DRAM 
endowed with 20 layers is only 12 picosecs.

The final step is advanced package assembly of 
vaults, layers and TSVs. This prevents parasitic 
capacitances which reduce signal speed and increase 
power required to switch. 
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A comparative in bandwidth
with existing technologies

On a CPU system (PC with a 4-channel motherboard, 256 bits):
[2013] DDR3 @ 4 GHz (2x 2000 MHz): 128 Gbytes/s.
[2014] A CPU with HMC 1.0 (first generation): 320 Gbytes/s. on each dir.
[2015] A CPU with HMC 2.0 (second generation): 448 Gbytes/s. 

On a GPU system (384-bits wide graphics card):
[2013] A GPU with GDDR5 @ 7 GHz (2x 3500 MHz): 336 Gbytes/s.
[2014] A GPU with 12 chips of 32 bits manuf. using near memory HMC 

1.0 would reach 480 Gbytes/s. (6 channels HMC 1.0 @ 80 GB/s. each).
[2015] A GPU using HMC 2.0 (112 GB/s.) would reach 672 Gbytes/s., 

which doubles the bandwidth with respect to the most advanced 
GDDR technology in 2013.

72

(*) Taking the bandwidth estimations given by HMCC 1.0 y 2.0 (20 and 28 GB/s. respectively on each 16-bit link for each 
direction). Nvidia already confirmed in GTC'13 data bandwidths around 1 TB/s. for its Pascal GPU.
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6.3. Analysis based on the roofline model
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Impact on GPUs:
Analysis based on the roofline model
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Tesla K20X: 1310 GFLOPS (double precision)

Platforms
to compare
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The Roofline model: Hardware vs. Software
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The chart places Xeon Phi 225 as 30% 
slower than K20X on DGEMM, but our 
experimental runs say that K20X is:

50% faster in double precision.
70% faster in single precision. 
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The Roofline model: Software evolution.
Case study: FMM (Fast Multipole Method)
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Concluding remarks

 Kepler represents the architectural design for 2013-2014, 
ready to host thousands of cores on a single die.

 Deploys all types of parallelism: Task (threads), 
instruction (pipelines), data (SIMD) and vectorial (warps).

 Enhances power consumption and programmability, 
improving CUDA for irregular and dynamic applications. 

 The GPU is more autonomous, but at the same time 
allows more interaction with the CPU.

 The memory hierarchy improves significantly, as well as 
the connection among GPUs.

 SMX-DRAM interconnect will be crucial in future designs.
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Thanks for coming!

You can always reach me in Spain           
at the Computer Architecture Department  
of the University of Malaga:

e-mail: ujaldon@uma.es
Phone: +34 952 13 28 24.
Web page: http://manuel.ujaldon.es           

(english/spanish versions available).

Or, more specifically on GPUs,              
visit my web page as Nvidia CUDA Fellow:

http://research.nvidia.com/users/manuel-ujaldon
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