New hardware features in
Kepler, SMX and Tesla K40

GPGPUZ2: Advanced Methods for Computing with C
Cape Town, April, 2014

» \E 4 s
‘.Il

x}' } L | ;-“" ::‘.I_

-
O
>

o'
ety

Manuel Ujaldon TR LR W Y
Computer Architecture Department. University of Malaga. A ST Y, RO R
CUDA Fellow , ‘ / & -

5

<A NVIDIA. d—

<

NVIDIA.

L W%WMWJMM zéf 3
Q/%Mg@mm@@f%m f@%@g@@

b i

David A. Patterson & John Hennessy

Organization and Computer Design

Mc-Graw-Hill (1995)
Chapter 9, page 569

<3

NVIDIA.

>

NVIDIA.

Talk outline [63 slides]

1. Introducing the architecture [4 slides]

2. The memory [3]

3. The SMX cores [9]

4. How the SMX works: Front-end and back-end [21]

5. Functional enhancements [11]
1. Dynamic parallelism [5]

2. Hyper-Q [6]
6. A look to the future [15]

1. Vectorization: The warp size [7]
2. Stacked-DRAM: 3D memory on top of the GPU [4]
3. Analysis based on the roofline model [4]

> |
FYDIA: - - =1{a® sl) EF =1[e

.z s
PR .

-

W e N ~f

1. Introducing

the architecture

<A NVIDIA.

<3

NVIDIA.

The three pillars of Kepler

-]

-

o,

L aadl
— g]

S~
—y -
—

o " P

Performanc

Progra

«g - - 2100 ' ol) A = l[e

NVIDIA.

>

NVIDIA.

And its three basic innovations

A multiprocessor with more
resources and less power.

|

Dynami
parallelis

The GPU is autonomous,
can launch CUDA kernels.

=
55
i1
B
i3
e
3
-{

——

Multiple kernels can share
the SMXs.

1- - }-

<

- A A -
NVIDIA. . «11019 I C . -0

<3

NVIDIA.

SMX Balance of Resources:
Surnrary of improvements versus Fermi

Resource Kepler GK110 vs. Fermi GF100
Floating-point throughput

Maximum number of blocks per SMX
Maximum number of threads per SMX

L2 cache capacity

<3

NVIDIA.

Cormmercial models available for Kepler:

GeForce vs. Tesla

Designed for gamers:
Price is a priority (<500€).
Availability and popularity.
_ittle video memory (1-2 GB.).
~requency slightly ahead.
Hyper-Q only for CUDA streams.

Perfect for developing code
which can later run on a Tesla.

nnnnnn

Oriented to HPC:

Reliable (3 year warranty).

For cluster deployment.

More video memory (6-12 GB.).
Tested for endless run (24/7).
Hyper-Q for MPI.

GPUDirect (RDMA) and other
features for GPU clusters.

Memory
<A NVIDIA.

2.

S A ,' /¢ N & ~:

\Ikuﬂ.h\o., s .

<3

NVIDIA.

The merory in Tesla cards: Fermi vs. Kepler

Tesla card M2075 | M2090 K20 | K20X | K40
32-bit register file / multiprocessor 32768 32768 65536 65536 65536
L1 cache + shared memory size 64 KB. 64 KB. 64 KB. 64 KB. 64 KB.

PR eS| 32 bits 32 bits | 64 bits 64 bits 64 bits

| T e e] 575 MHz - 650 MHz | 706 MHz 732 MHz 745,810,875 MHz
Szl SakEl=el =il s azileli e | 73.6 GB/s. 83.2 GB/s. |180.7 GB/s 187.3 GB/s 216.2 GB/s.
768 KB. 768 KB. | 1.25MB. 1.5 MB. 1.5 MB.

L2 cache bandwidth (bytes/cycle) LS 384 1024 1024 1024
I 1/9 perclk 1/9 perclk| 1 perclk 1 per clk 1 per clk

226l cielnglle o) (alel=inl clalsli=sisi] 24 per clk 24 per clk | 64 per clk 64 per clk 64 per clk
DRAM memory width 384 bits 384 bits 320 bits 384 bits 384 bits

'DRAM memory clock (MHz) 2x 1500 2x 1850 | 2x 2600 2x 2600 2 x 3000
DRAM bandwidth (ECC off) 144 GB/s. 177 GB/s. | 208 GB/s. 250 GB/s. 288 GB/s.

DRAM memory size (all GDDR5) 6 GB. 6 GB. 5 GB. 6 GB. 12 GB.
External bus to connect to CPU PCI-e 2.0 PCI-e 2.0 | PCI-e 3.0 PCI-e 3.0 PCI-e 3.0

QDZ = - 2100 ol) A = l[e

NVIDIA.

10

Differences in memory hierarchy:
Ferrni vs. Kepler

Thread Kepler Memory Hierarchy

Thread

Y y

Shared Memory L1 Cache Shared
1 Memory Cache

L2 Cache J

Cache

<

NVIDIA.

The merory hierarchy in numbers

GPU generation

Hardwaremodel | GF100/GF104| GK104 | GK110 | J
mmmm

Max. 32 bits registers / thread 63 63 SW. Working set
32 bits registers / Multiprocessor 32K 32K 64 K m: HW. Working set
Shared memory / Multiprocessor 16-48KB 16-48KB 16-32-48KB 16-32-48 KB HW. Tile size

L1 cache / Multiprocessor 48-16KB 48-16KB 48-32-16KB 48-32-16 KB HW. é;cezzs
768 KB. 768 KB. 768 KB. m Hw, — Access
speed

‘All Fermi and Kepler models are endowed with:

'ECC (Error Correction Code) in the video memory controller.
'Address bus 64 bits wide.

'Data bus 64 bits wide for each memory controller (few models

i include 4 controllers for 256 bits, most have 6 controllers for 384 blts) "

NVIDIA. - =

- 10

12

-y

3. The SMX cores

<A NVIDIA.

>

NVIDIA.

A brief reminder of what CUDA is about

GPU § Thread

§ ... §| Thread block

On-chip
' memory

. £ 5[5 . 8|5 E||Grido
Memory £ |5 2|5 .

outside the
GPU chip
(but within the

raphics card
Irap) Grid 1

14

14

<X

NVIDIA.

Fermi Kepler

) GK104 |GK110| GK110
Architecture H GT200 HH (K10) | (K20) | (K40)

et oo nes a2t 202 203 oo

CUDA Compute
Capability (CCC)

8 32 48 192 192 192

240 512 336 1536 2688 2880

15

IIIIIII

15

S

NVIDIA.

Kepler in perspective:
Hardware resources and peak performance

Tesla card (commercial model) M2075 | M2090 K20

K40
Similar GeForce model in cores GTX 470 |GTX 580 - |GTX Titan| GTX Titan Z (x2)

GPU generation (and CCC) Fermi GF100 (2.0) Kepler GK110 (3.5)

Multiprocessors x (cores/multipr.) 14x32 16x32 13x192 14x192 15 x 192
Total number of cores 448 512 2496 2688 2880

Type of multiprocessor SM SMX with dynamic paralelism and HyperQ

Transistors manufacturing process 40 nm. 40nm. 28 nm. 28 nm. 28 nm.

Cl0Ne lole|Ciinzlo[l=glo A (iole o =lalpilesi | 575 MHz 650 MHz 706 MHz 732 MHz 745,810,875 MHz
©oli= oo <inslelb=pe s (o €lz€lz0bE 11150 MHz 1300 MHz 706 MHz 732 MHz 745,810,875 MHz
Number of single precision cores 448 512 2496 2688 2880
GFLOPS (peak single precision) 1030 1331 3520 3950 4290
Number of double precision cores 224 256 832 896 960
GFLOPS (peak double precision) 515 665 1170 1310 1680

16

<

- 5 - A -
IWVIDIA. - =1{a® sl k2l =1[e

16

lllllll

The new Gerorce GTX Titan Z

5760 cores (2x K40).
Video memory: 12 Gbytes.

Peak performance: 8 TeraFLOPS.
Starting price: $2999. s

IIIIIII

17

NVIDIA.

>

NVIDIA.

GPU Boost

~ Allows to speed-up the GPU clock up to 17% if the power
required by an application is low.

-~ The base clock will be restored if we exceed 235 W.

~We can set up a persistent mode which keep values
permanently, or another one for a single run.

Performance

Power Headroom Maximizes Graphics Clocks within
the specified power envelope
- Base Clock Highest Boost Clock

/45 MHz 810 MHz 875 MHz

18

18

Every application nas a different benaviour
regarding power consumption

Here we see the average power (watts) on a Tesla K20X
for a set of popular applications within the HPC field:

160
120
80

40

0
AMBER ANSYS Black ScholesChroma GROMACS GTC LAMMPS LSMS NAMD Nbody QMCPACK RTM SPECFEM3D

19

lllllll

19

<3

NVIDIA.

Those applications which are less power
nungry can benefit from a higher clock rate

< For the Tesla K40 case, 3 clocks are defined, 8.7% apart.

Boosted

clock #2 -- 875 MHz

Boosted

clock #1 -- 810 MHz
Base -~ 745 MHz
clock

Up to 40% higher
performance relative
to Tesla K20X.

And not only GFLOPS are
Workload #1 Workload #2 Workload #3 . -
Worst case .. AMBER .. ANSYS Fluent improved, but a_Iso effective
Reference App memory bandwidth.

20
<

IWIDIA. s s Ald0 13 DR

20

GPU Boost compared to other approaches

>

NVIDIA.

- It is better a stationary state for the frequency to avoid
thermal stress and improve reliability.

A

GPU
clock

Automatic clock switching Deterministic Clocks

Default Boost Base
Preset options Lock to base clock 3 levels: Base, Boostl o Boost2

Boost interface Control panel Shell command: nv-smi

Target duration for boosts Roughly 50% of run-time 100% of workload run time

Other vendors Tesla K40

21

21

GPU Boost - List of commands

Command Effect

nvidia-smi -q -d SUPPORTED CLOCKS View the clocks supported by our GPU

nvidia-smi -ac <MEM clock,

Graphics clock> Set one of the supported clocks

Enables persistent mode: The clock settings are

nvidia-smi -pm 1 . :
& preserved after restarting the system or driver

- : Enables non-persistent mode: Clock settings revert
nvidia-smili

to base clocks after restarting the system or driver

nvidia-smi Query the clock in use

nvidia-smi Reset clocks back to the base clock

nvidia-smi Allow non-root users to change clock rates

S

PAEOtA B = 2100 013 »J. = |[e

22

<3

NVIDIA.

Example: Query the clock in use

onvidia-smi -q -d CLOCK —1d=0000:86:00.0

Timestamp : Wed Jan 29 13:35:58 2014
Driver Version 3137
Attached GPUs -
GPU 0000:86:00.0
Clocks
Graphics : 875 MHz
) SM : 875 MHz
Memory : 3004 MHz
Applications Clocks
Graphics : 875 MHz
Memory : 3004 MHz
Default Applications Clocks
Graphics : 745 MHz
Memory : 3004 MHz
Max Clocks
Graphics : 875 MHz
SM : 875 MHz
Memory : 3004 MHz

23
<

NVIDIA. K = AIU0 Jic

23

.rt
PR

4

4.'Hc;w the SMX worksf

Front-end and back-end

<A NVIDIA.

<A

NVIDIA.

Memory Controller

Memory Controller

Memory Controller

Memory Controller

Memory Controller

<A

NVIDIA.

25

>

NVIDIA.

The SMX multiprocessor

Instruction scheduling
and issuing in warps

Front-end

Disgatch Una Dwpatch Urit
O OE N NN N . N ..

3 s
Register Flle (65,536 x 32.bit)

: : : 4
Core Core

Core Core

Core Core

Instructions execution. oo 550 I
512 functional units:
192 for ALUs.

192 for FPUs S.P.
64 for FPUs D.P.
32 for load/store.
32 for SFUs (log,sqart, ...) = -

Core Core

Back-end

Core Core

Core Core

Core Core

Core Core

| GAKB Sharod Memory /L1 Cache

Memory access B —am-m LNterface
Tex Tex e
IS%A. s s A10C ' o5 IR 2110

26

>

Fromn SM multiprocessor in Fermi GF100
to SMX rultiprocessor in Kepler GK110
Front-end et
£
= Back-end o i =
— R -
LO/ST Core -
LO/ST Eon s -
— = .-
=l > - —
LovsT con L
— = -
- £ - -
Core Core Core — -
interconnect Network SFU -

27

<3

NVIDIA.

A comparison between instructions issue
and execution (front-end vs. back-end)

SM-SMX fetch & issue (front-end) SM-SMX execution (back-end)

Can issue 2 warps, 1 instruction each. 32 cores [1 warp] for "int" and "float".

Total: Up to 2 warps per cycle. 16 cores for "double" [1/2 warp].
St (eFnelenr - Active warps: 48 on each SM, 16 load/store units [1/2 warp].

chosen from up to 8 blocks. 4 special function units [1/8 warp].

In GTX580: 16 * 48 = 768 active warps. A total of up to 5 concurrent warps.

Can issue 4 warps, 2 instructions each. 192 cores [6 warps] for "int" and "float".
Total: Up to 8 warps per cycle. 64 cores for "double" [2 warps].
Ehllsp el @i Active warps: 64 on each SMX, 32 load/store units [1 warp].
chosen from up to 16 blocks. 32 special function units [1 warp].
In K40: 15 * 64 = 960 active warps. A total of up to 16 concurrent warps.

In Kepler, each SMX can issue 8 warp-instructions per cycle, but due
to resources and dependencies limitations:
/ is the sustainable peak.
4-5 is a good amount for instruction-limited codes.
<4 in memory- or latency-bound codes.

«z - - 2100 101 E pJi

NVIDIA.

28

28

>

NVIDIA.

The way GigaThread scheduling works

~ Each grid provides a number of blocks, which are assigned
to SMXs (up to 16 blocks per SMX in Kepler, 8 in Fermi).

~ Blocks are split into warps (groups) of 32 threads.

~ Warps are issued for each instruction in kernel threads (up
to 64 active warps in Kepler, 48 in Fermi). Example:

>

NVIDIA.

Increasing concurrency
and rnassive parallelism

GPU generation

Hardware model
CUDA Compute Capability (CCC)

Number of threads / warp (warp size)

Max. humber of warps / Multiprocessor
Max. humber of blocks / Multiprocessor

Max. number of threads / Block 1024 1024 1024 1024
Max. humber of threads / Multiprocessor 1536 1536 2048 2048

Crucial enhancements

idi i Max. concurrency
for hiding latencies r each SMX

30
«DZ = - 2100 ol) A

NVIDIA.

-

30

>

NVIDIA.

Express as much parallelism as possible:
SM¥s (Kepler) are wider than SMs (Fermi)

Tetris (tile = warp_instr.):
- Issues 4 warp_instrs.

- Executes up to 10 warps =

320 threads.

- Warp_instrs. are symmetric
and executed all in one cycle.

Color code:

l for instructions using “int”.
B for instrs. using “float”.

Issu_es 4

,- warp_instrs.

The player is the GPU scheduler!
You can rotate moving pieces if
there are no data dependencies.

>
Executes up to 10 warp_instrs.
<

NVIDIA.

(instr.

Example: Kernel with blocks of 384 threads (12 warps).

Block 0O:

Block 1:

Ao sub o

Jof od o d e e el] Froadld e

/ Fermi:
- Issues 2.

G80: Takes
4 cyclg_s for - Executes
executing
ench . up to 5.
warp_instrs. ..
4 .!_u'
i
i SM in
G80: Fermi:
16 U.F. 100 functlonal units

- Issues 4 warps x 2 instructions.
- Executes up to 16 warp_instrs.
(up to 512 functional units in parallel)

ol ol 1
32 SFU

-
Dummy oo

6x32 = 192 ALUs 192 SP FPU

SMX (Kepler): 512 functional units 31

31

<3

NVIDIA.

Thread Level Parallelism (TLP) and
Instruction Level Parallelisrm (ILP)

Increase parallelism horizontally via TLP:
More concurrent warps (larger blocks and/or more active blocks per SMX).
>

Increase _I_I_I_I_I.I_I_I.I_I_I.I .I_I.I.I_I.I_I
parallelisn | (et e

vertically
via ILP: -------.---- --..-.-

debandent | (ot
instructions. | |l ittt ot o ettt i A Frrrrrre

v

-~ SMXs can leverage available ILP interchangeably with TLP:
~ It is much better at this than Fermi.

~ Sometimes is easier to increase ILP than TLP (for
example, a small loop unrolling):

~ # of threads may be limited by algorithm or HW limits.
~We need ILP for attaining a high IPC (Instrs. Per Cycle).

,Sg . s A1d0 ' adle IR 2110

32

32

>

NVIDIA.

Kepler GPUs can hold together all
forms of parallelism. Example: K40.

1: Thread-level parallelism (TLP)

(SN R N N R W " " " d;dod YMododd SMX 0
- T e — —————— —— ay A S S

2: Instrs. (ILP)

I " 8 8 3 3
ey sy ~— e— — e— ~l—

4: Vectorial (warp = 32) The K40 can schedule up to

64x15 warps in a single cycle:
y 30720 threads in 1.14 ns.

~Imagine a 3D tetris with 15 boxes and up to 64 pieces
falling down simultaneously on each of them, because that
is the way K40 works when all parallelism is deployed.

<<= .
n:l%t\. C = =1l0l0 JIC DR

_ All this volume represents 60x15 warps!

33

-

33

A quick introduction to our hands-on

1: Thred-level parallelism (TLP)

>
Sparse matrices processing

d. 4. 4. 4. 4. 4. 4. 4. 4. .4..4.4
=l ol ol ol ol el ol ol el M
d ol ol ol =l ol =l =l =l =l =M

2: Instrs. (ILP)

Nttt

4: Vectorial (warp = 32) Qur code traverses the whole matrix,
performing operations independently

~ Base strategy: on each element.
~We launch a CUDA kernel for each matrix column.
~ Each kernel will have the lowest number of blocks.
~ Each kernel will have the largest number of warps.

IWIDIA. . Ald0 o5 DA Fello

>

NVIDIA.

A quick introduction to our hands-on (2)

5.
—

float double arse matrices processing

S| IS SIS S SUSESESLSUS,
EEEREEEREER

float double values[numelements];
for all elements assigned to each thread:

32 SFU for numops. to be done on each element
32 LD/ST values[i] *= values|[i];
6-AN\DP FPU

/ \ Changing the operator to lighter (addition)
6x32 = 192 ALUs 192 SP FPU v v or heavier (division) will also have an impact

O (it il Gepending on the latency to carry out that

SMX in Kepler: 512 parallel functional units Qperat|on

35
<3

TAEDLA . 0 aldC ol DA Fello

35

Case study: Zernike moments

Ju o)

32-bits FPU | 64-bits FPU | Load/store

GPU
resources

Fermi 32% 32% 16% 16% 4%

Kepler 37.5% 37.5% 12.5% 6.25% 6.25%

Kernel for

! 54% 21% 0% 25% 0%
Zernike

Kepler Fermi Kepler Fermi Fermi

'Fermi is more balanced in this case.

'With the resources distribution in Kepler, the execution of
integer arithmetic improves, but the floating-point arithmetic
and the load/store worsens. All the others are not used.

62 - A1AC 11 pJi

nnnnnn - —

36

-

36

NVIDIA.

-
7))
(D
(.
(D
()
-
-,
>
_<.
),
-
a)
O
“—
—)
D
“
(1
@
N
)
O
—
I\
N 55
Q
—
—

5r0
000C /our HHJ cation adapts to resources

Detailed Instruction Mix Visualization

Visual Profiler and NSight EE

1 Instruction Execution Counts

The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each class
the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The "Inactive”
result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due to

divergence.
| Floating-Point Operation Counts
The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and
for each class the chart shows the percentage of thread execution cycles that were devoted to executing operations in that class. The
results do not sum to 100% because nonfloating-point operations executed by the kernel are not shown in this chart

Execution Count (% of total)

Execution Count (% of total)

NVIDIA.

37

The way the GPU front-end works:
(1) How warps are scheduled

S i
o0 of d o o o o o o o]
(I

IS
Jul js

J

SM (Fermi)

S i
o0 of ot o o o o o o o]
(I

iEi--

i

i

<3

NVIDIA.

SMX (Kepler)

>

NVIDIA.

The interface between front-end & back-end:
(2) How warps are issued

~In the 5 cydiés shown, we could Hai@®xecuted all this work

~ In Fermi, there is a deficit in SFUs (blue)gwhereas in Kepler, the
deficit goesiiid load/store units (green).

E) i

- Kepler balances double precision (red) aMas a good surplus in
“int” and_flpat” computations, an evidence eal codes have
more presence of orange and, overall, yelloiissimictions.

- o=

ey
i A0 1Attt

SM (Fermi) SMX (Kepler)

39

39

>

NVIDIA.

The way the GPU back-end works:
(3) Warps execution

~Let us assume that when we sta====axecution there are
few warps peﬁling to be executed:

- Two sing precision warps (orange).
~ Two double precision warps (red).

A3
-

> Looks |M8lthat it is smart for the frofia to work
ahead afithe back-end (prefetching) in

mazimize throughput.
Ju J Y

il

iy o)
N IR jjﬂ:::”:-. .
i SMX (Kepler)

40

40

S

NVIDIA.

Some remarks about the “tetris” model

'In Fermi, red tiles are not allowed to be combined with others. H
'In Kepler, we cannot take 8 warp_instrs. horizontally, bricks must

have a minimum height of 2. ~ Blimtststataia]

> Instructions have different latency, so those consuming more
than one cycle (i.e. double precision floating-point) should
expand vertically.

> In case the warp suffers from divergencies, it will consume two
cycles, not one. We can extend it vertically like in the previous case.

- Real codes have a mayority of yellow tiles (“int” predominates).

> Some bricks are incomplete, because the warp scheduler cannot
find a 4x2 structure free of dependencies. e =

> Bricks can assemble tiles which are not contiguous.

41

41

>

NVIDIA.

Warps latency

~ Even if all tiles be executed in one cycle, warps duration
would not be that one. The time elapsed by a warp within
the GPU is the addition of three:

~ Scheduling time.

~ Issuing time.

~ Execution time.

~ Scheduling/execution are quite regular, but issuing is not:
It depends on tiles piled up at the bottom of the bucket

(reserve stations). That is what explains the variance of its
duration.

42
<
NVIDIA.

42

<3

NVIDIA.

The warps behaviour teaches us that the
GPU is not a regular processor at all

< Unpredictable factors at run-time pose a challenge for the
workload balance among multiprocessors. Here is an

example of the variance for the last 8 warps executed on
each multiprocessor of a G80 GPU:

arp Vis - test.bin.
| Elle View Help
B Q] e Sde(tlon:IR[S[TIZCOMIS&(’Q:'SHOWI

0
o0 O
0.1 9%—

<
DIA.

43

43

-

5. Functional improvements

<A NVIDIA.

-

5.1. Dynamic parallelism

<A NVIDIA.

>

NVIDIA.

What is dynamic parallelism?

< The ability to launch new grids from the GPU:

- Dynamically: Based on run-time data.
~ Simultaneously: From multiple threads at once.
~ Independently: Each thread can launch a different grid.

Fermi: Only CPU Kepler: GPU can
can generate GPU work. generate work for itselr.

46

46

>

NVIDIA.

The way we did things in the pre-Kepler era:
The GPU was a slave for the CPU

~ High data bandwidth for communications:
~ External: More than 10 GB/s (PCI-express 3).

~ Internal: More than 100 GB/s (GDDRS5 video memory and 384 bits,
which is like a six channel CPU architecture).

[Function] Lib] [Lib] [Function] [Function]
Init A A A A
Alloc GPU
‘ CPU
[Operation 1]—>[Operation 2]—)[Operation 3

47

<3

NVIDIA.

The way we do things in Kepler:
GPUs launch their own kernels

The pre-Kepler GPU is a co-processor

CPU

A A A A A

The Kepler GPU is autonormous:
Dynarnic parallelisrm

CPU

>i

*W»

il 60

Now programs run faster and
are expressed in a more natural way.

NVIDIA.

Example 1: Dynamic work generation

Assign resources dynamically according to real-time
demand, making easier the computation of irregular
problems on GPU.

It broadens the application scope where it can be useful.

Coarse grid Fine grid

=5 =

Hiqher performance, Lower performance,
ower accuracy higher accuracy 49

NVIDIA.

49

le 2: Deploying

1)
|—‘
-

O

NVIDIA.

rallelism pased on level of cdetall

(D

lllllll

CUDA until 2012:

e The CPU launches
kernels regularly.

e All pixels are treated
the same.

CUDA on Kepler:

e The GPU launches a
different number of
kernels/blocks for each
computational region.

50

50

-y

5.2. Hyper-Q

<A NVIDIA.

S

NVIDIA.

Hyper-Q

'In Fermi, several CPU processes can send thread blocks to

the same GPU, but a kernel cannot start its execution until
the previous one has finished.

'In Kepler, we can execute simultaneously up to 32 kernels
launched from different:

- MPI processes, CPU threads (POSIX threads) or CUDA streams.
- This increments the % of temporal occupancy on the GPU.

FERMI KEPLER

1 MPI Task at a Time 32 Simultaneous MPI Tasks

. |

52

52

>

NVIDIA.

An example:
3 streams, each cormposed of 3 kernels

__global kernel A(pars) {body} // Same for B...Z stream 1
cudaStream t stream 1, stream 2, stream 3;

kernel_A

cudaStreamCreatewithFlags(&stream 1, ...);
cudaStreamCreatewithFlags(&stream 2, ...); kernel_C
cudaStreamCreatewithFlags(&stream 3, ...);

kernel_B

E kernel A <<< dimgrida, dimblockA, 0, stream 1 >>> (pars); stream_2
5 kernel B <<< dimgridB, dimblockB, 0, stream 1 >>> (pars); kernel P
-Ev kernel C <<< dimgridC, dimblockc, 0, stream 1 >>> (pars); kernel_Q
Ny, O kernel_R
£ kernel P <<< dimgridP, dimblockP, 0, sStream 2 >>> (pars);

o | kernel Q <<< dimgridQ, dimblockQ, 0, sStream 2 >>> (pars);

-E, kernel R <<< dimgridR, dimblockR, 0, sStream 2 >>> (pars); stream_3
m, ~°° kernel_X
= kernel X <<< dimgridX, dimblockx, 0, stream 3 >>> (pars); ernel Y
s kernel Y <<< dimgridy, dimblocky, 0, stream 3 >>> (pars); —
ﬁ,,kernel_z <<< dimgridz, dimblockz, 0, stream 3 >>> (pars); kernel_Z

53
<3

-1 b A - A
NVIDIA. 3 3 =1{0[® sl “ =11{e

53

>

NVIDIA.

Grid management unit: Fermi vs. Kepler

Fermi

Stream Queue
(ordered queues of grids)

Stream 2 Stream 3

Stream 1

Kernel C Kernel R Kernel Z
Kernel B Kernel Q Kernel Y
Kernel A Kernel P Kernel X

~ Single hardware queue
multiplexing streams

Work Distributor

Tracks blocks issued from grids

16 active grids

<

NVIDIA.

CUDA Generated Work

Kepler GK110

Stream Queue

Parallel hardvare streams

Grid Management Unit
Pending & Suspended Grids

1000s of pending grids

Allows suspending of grids

Work Distributor
Actively dispatching grids

32 active grids

54

54

>

NVIDIA.

The relation between
software and hardware queues

Fermi: o A--B - C
But CUDA streams multiplex into a single qM
, Stream 1
5 <

Up to 16 grids
on GPU hardware | —

ream
Chances for overlapping: Only at stream GCM-
X-Y-/

Stream 3

55
«DZ = - 2100 ol) A = l[e

NVIDIA.

55

The relation between
software and hardware queues

Fermi; o |
But CUDA streams multiplex into a single queue
Up to 16 grids

can run at once

i PrQ-R
on GPU hardware Q
Chances for overlapping: Only at stream GM

Kepler: No inter-stream dependencies

Up to 32 grids
can run at once
on GPU hardware

A

Concurrency at full-stream level

nnnnnn

By B (€

Stream 1

Stream 2

RN

Stream 3

A--B--C

Stream 1

Stream 2

X--Y--2Z

Stream 3

pJi 2O

56

56

>

NVIDIA.

Without Hyper-Q: Multiprocess by temporal division

100

Ul
o

% GPU utilization

o

With Hyper-Q: Symultaneous rnultiprocess

T u BB
: C
@
B
A
« Time saved >

A B C
\ Time >
;: :I_:IIIIIA

Ul
o

% GPU utilization

o

...mapped on GPU 57

57

6. A look-ahead to next generations

<A NVIDIA.

Overview of CUDA hardware generations

NVIDIA.

N N
N D

N
o

- 3D Memory
NVLink

_—
oo

—_—
o

—_
N

—_
N

' DX12

—_
o

Kepler
Dy '

Fermi
FP64

N BN O O

GFLOPS in double precision for each watt consumed

' CUDA

2008 2010

2012 2014 2016

i

' Unified memory

59

59

-y

6.1. The warp size

<A NVIDIA.

The way each multiprocessor
swallows SIMD instructions

G T) T

e T ERRRRRE HETEEEEEEENE Y dHii

Instr. 3

eeeeee

A hypothetical GPU front-end
with the warp size increased to 64

SMX
|

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
3 3 3 B Y 3 £ &

Register File (65,536 x 32-bit)

4 $ $ — 3/ & S 1 S 4 I 4 4 4 & 4 3 S

Core Core Core - Cgpre Core Core - Lo'sT SFU Core Core Core - Core Core Core - LovsT SFU

Register File (65,536 x 32-bit) —

$ 4 I o 5 & $ t | e TR Dhem eExd

c«oCmCon-CmConm-
ConConCon-CmConc«v-msr SFU
CMCouCon-ConCmCon-Ln-sr SFU
CotoCmCon-Con(:onc«o-m-m
ConCo«Cm-Cou Core Cou-LD-SY
CmCmc«--ConCmCon-Lnsv
CMCMCON-CONCN‘CM-LSSY

. Manuel Ujaldon - Nvidia CUDA Fellow

The way each multiprocessor would swallow
SIMD instructions using a warp size of 64

O) O

T | O/ T

- The cost for the control unit is
just the half.

- The penalty due to data
dependencies is potentially lower,
and the hardware is more simple.

- The penalty due to control
dependencies is higher.

eeeeee

S

NVIDIA.

The GPU back-end:
Transforming the SMX for a warp size of 64

Functional warp size | warp size
Unit

3 +
LDST SFU

LoesT SFU
LOsY SFU
LT SFU
LosT SFU
LT SFU
LosT SFU

3T SFU

LOsTY SFU

0 LOAST
LT SFU Core Core Core - Core Core Ceove - LOSY

B The deficit lies in load/store

BB and SFUs, but they were facing

sl LT PEET B a tougher constraint during the

Fermi generation, and they
e e WVETE Able to recover from that.

Tex Tex Tex Tex Tex Tex Tex Tex

64 KB Shared Memory / L1 Cache

Tex Tex Tex Tex Tex Tex Tex Tex

64
«2 = 10 ‘ Alc B

NVIDIA. - C . -~

64

DDDDDD

Other facts promoting the warp size to 64

'Shared memory: Concurrency attained through banks,
and they were already increased from 16 (pre-Fermi) to 32.

‘Device memory: Higher data bandwidth is required, but
that is not the problem in the DDR saga (latency is).

'Branching: Techniques minimizing penalties on divergent
branches are more mature and ready to face the challenge.

‘Scalability in the number of cores: Simplicity in the
control unit would allow to increase cores of every kind.

‘Nvidia is anticipating this move with a warning.

'Other vendors are moving in the same direction:
~Graphics Core Next (GCN) from AMD is a 4 x 16-wide vector SIMD.

65

nnnnnn

65

>

NVIDIA.

To benefit from this technological change

~ Make blocks bigger:
~ Less than 64 threads per block is forbidden.
-~ 256 would now be the minimum required.
~ 384 gains momentum.

~ Pay more attention to warp divergencies.

~ Advantageous for regular computations. Sophistication of
hardware scheduler (Hyper-Q, dynamic parallelism) lifts
irregular applications.

66

66

Hlow It would be Kepler with a warp siz

Y

ol
o

o

o

-- Kepler32:
- Issues 4 warps X 2 instrs.
! ! - Executes up to 16 warp_instrs.
(512 functional units).

32 SFU

32 LD/ST
64 DP FPU

6x32 = 192 ALUs 192 SP FPU jx v Y

SMX in Kepler: 512 parallel functional units

If we take for granted that Nvidia uses to “complete” to a
warps enteros las Unidades Funcionales en la siguiente
generacion, verde y azul aumentarian, y el parecido de

Kepler64 con el Tetris del video-juego seria asombroso.

IIIIIII

Kepler64:
- Issues 4 warps.

| U

o
T
-
-

- Executes up to 8.

<X

NVIDIA.

7e of 64

e

67

67

-

6.2. Stacked (3D) DRAM

<A NVIDIA.

NVIDIA.

;:.j

n.
."?‘-

. .’!

3 -

epL 8
Ve

: e
» .4
e,
g . Lee
3 , - .-"_ p
{ ’ s . .
7 ’& @
@O‘.@@ ™ .
. v . -
= - - T
-"-2 .‘-.- : | . »
1., - 4

, ¥
» ol...

oo @nvmm,’ Y
il an"‘ﬂ mmmmnmmmnummmmmmmmn

69
nvfmA.

69

g
=
>
c

>

NVIDIA.

Details on silicon integration

~ DRAM cells are organized in vaults, which take
borrowed the interleaved memory arrays from already
existing DRAM chips.

~ A logic controller is placed at the base of the DRAM
layers, with data matrices on top.

~ The assembly is connected with through-silicon
vias, TSVs, which traverse vertically the stack using
pitches between 4 and 50 um.

~ For a pitch of 10 um., a 1024-bit bus (16 memory
channels) requires a die size of 0.32 mm2, which barely
represents 0.2% of a CPU die (160 mm?2).

-~ Vertical latency to traverse the height of a Stacked DRAM
endowed with 20 layers is only 12 picosecs.

~ The final step is advanced package assembly of
vaults, layers and TSVs. This prevents parasitic
capacitances which reduce signal speed and increase
power required to switch.

<

NVIDIA.

A comparative in bandwidth
With existing technologies

On a CPU system (PC with a 4-channel motherboard, 256 bits):
2013] DDR3 @ 4 GHz (2x 2000 MHz): 128 Gbytes/s.

2014] A CPU with HMC 1.0 (first generation): 320 Gbytes/s. on each dir.
2015] A CPU with HMC 2.0 (second generation): 448 Gbytes/s.

On a GPU system (384-bits wide graphics card):
[2013] A GPU with GDDR5 @ 7 GHz (2x 3500 MHz): 336 Gbytes/s.

[2014] A GPU with 12 chips of 32 bits manuf. using near memory HMC
1.0 would reach 480 Gbytes/s. (6 channels HMC 1.0 @ 80 GB/s. each).

[2015] A GPU using HMC 2.0 (112 GB/s.) would reach 672 Gbytes/s.,
which doubles the bandwidth with respect to the most advanced
GDDR technology in 2013.

(*) Taking the bandwidth estimations given by HMCC 1.0 y 2.0 (20 and 28 GB/s. respectively on each 16-bit link for each

direction). Nvidia already confirmed in GTC'13 data bandwidths around 1 TB/s. for its Pascal GPU.)

NVIDIA.

72

6.3. Analysis based on the roofline model

<A NVIDIA.

Impact on GPUs:
Analysis based on the roofline model

>

NVIDIA.

16384
8192

= GPU
4096

2048

1024

N ul
Ul -
ol ~f

128
64

32

GFLOP/s (double precision performance)

16

8 1
1/16 1/8] 1/4] 1/2] 1T 2T 4l 8] 16] 321 64 128] 256]

FLOP/byte (operational intensity)

74

74

Plathrm S Vendor | Microarchitecture GB/s.| GFLOP/s.

t Bulldozer 1 59,7 217,6 (DP)
0 com pa re Souther Islands |Radeon HD7970 [NPEEIETSLR(
Sandy Bridge R 512 2432 (DP)

- LS EET T XeonPhi T 300 1024 (DP)
32768] 5 o : Tesla M2090 665 (DP)
i E Fermi GF110 (16 SMe) 177 1331 (SP)
16384 '
: o Tesla K20X 1310 (DP)
5153] : Kepler GK110 (14 SMXs) 250 3950 (SP)

. : with Stacked 4000 (DP)
4096 5 Pascal GPU 3D DRAM 102445000 (SP)

2048 : Tesla K20X: 1310 GFLOPS (double precision)

1024

512

256

GFLOP/s (performance on double precision)
Sl R B

16
8 ! N
1/16 1/8] 1/4] 1/2] 1] 21 4] 8] 16] 321 64| 128] 256] 512] 1024] 2048]

;g/log scale FLOP/byte (operational intensity) = GFLOP/s / GB/s 75
< ante

NVIDIA.

2100 013 »J. = |[e

75

<3

NVIDIA.

The Roofline model: Hardware vs. Software

(The chart places Xeon Phi 225 as 30%\
slower than K20X on DGEMM, but our
experimental runs sag that K20X is:

50% faster in double precision.

Compute-bound

Memory-bound
kernels

kernels

Balance zone

~~
Q
)
C - [] - -
g 70% faster in single precision.
£ _
8192
£ o
Q N asCa
Q 4096
- _
o 2048 Kepler
wn —_ . Xeon Phi
O 1024 : Radeon
L AN Fermi
Q.) g :
@ / T Processor |GB/s.| GFLOP/s.|B/FLOP
—_ el Xeon
a / = 60 217 (DP) 0,235
S o %? Radeon 288 1010 (DP) 0,285
~— / el m Xeon 51 243 (DP) 0,211
o't 1 cC
g R = Xeon Phi 300 1024 (DP) 0,292
@) o o Fermi 7y SR lR) A
— . A w O 1331 (SP) 0,133
(u5 % |2 S — 1310 (DP) 0,190
— " S T = '
16 5 |2 M = Kepler 250 3950 (SP) 0,063
8 n | i = 4000 (DP) 0,256
ny o
1/16 1781 14l 12 1T 2T 4l 8T 16 32 64 128 256l Pascal 1024 15000 (SP) 0,085

. FLOP/byte (operational intensi
S

NVIDIA. 3 o A100 ilell: pJi =1{e

76

<3

NVIDIA.

1on.

Software evoluti

FMM (Fast Multipole Method)

The Roofline model
Case study

target particles

77

T - 1
3 &
g g
B
ded 12N WA |~
=
N
>
N
C
— 9
o C
(ueisaye)) Tz ININA =
© C
O
It
o O
...............] | o
...................... (122019YdS) 12N IWINL an.
<+
Q
)
~ 3
~
o
— QO
—
puss | M-
Q
<
B
=t
18 I3 Ig Ig T2 Iy 19 18 IR I IS8 18 2=
N ™ — o o o LN oN —
ﬂ m 0 <+ o —

N\

oueuwlo)lad uolisiald 3|gnop) s/d0149

<

NVIDIA.

77

<

NVIDIA.

Concluding remarks

- Kepler represents the architectural design for 2013-2014,
ready to host thousands of cores on a single die.

- Deploys all types of parallelism: Task (threads),
instruction (pipelines), data (SIMD) and vectorial (warps).

- Enhances power consumption and programmability,
improving CUDA for irregular and dynamic applications.

- The GPU is more autonomous, but at the same time
allows more interaction with the CPU.

- The memory hierarchy improves significantly, as well as
the connection among GPUSs.

- SMX-DRAM interconnect will be crucial in future designs.

78
«Dz - - 2100 | 1 B =l

nnnnnn

78

Thanks for coming!

>

NVIDIA.

You can always reach me in Spain
at the Computer Architecture Department
of the University of Malaga:
e-mail: ujaldon@uma.es
Phone: +34 952 13 28 24.
Web page: http://manuel.ujaldon.es
(english/spanish versions available).
Or, more specifically on GPUs,
visit my web page as Nvidia CUDA Fellow:

http://research.nvidia.com/users/manuel-ujaldon

nnnnnn

79

79

mailto:ujaldon@uma.es
mailto:ujaldon@uma.es
http://manuel.ujaldon.es
http://manuel.ujaldon.es
http://research.nvidia.com/users/manuel-ujaldon
http://research.nvidia.com/users/manuel-ujaldon

