Inside Kepler

Manuel Ujaldon
Nvidia CUDA Fellow
Computer Architecture Department
University of Malaga (Spain)
Talk outline [46 slides]

1. Introducing the architecture [2]
2. Cores organization [9]
3. Memory and data transport [6]
4. Major software and hardware enhancements [8]
 1. Software: Relaxing constraints on massive parallelism.
 2. Hardware: Grid dimensions, dynamic parallelism and Hyper-Q.
5. Exploiting on Kepler the new capabilities [21]
 1. Dynamic load balancing [2].
 2. Thread scheduling [8].
 3. Data-dependent execution [2].
 4. Recursive parallel algorithms [4].
 5. Library calls from kernels [3].
1. Introducing the architecture
The three pillars of Kepler

Power consumption

Performance

Programmability
Summary of the most outstanding features

Manufacturing: 7100 million trans. @ 28 nm. by TSMC.

Architecture: Between 7 and 15 multiprocessors SMX, endowed with 192 cores each.
- The number of multiprocessors depends of the GK version [GKxxx].

Arithmetic: More than 1 TeraFLOP in double precision (64 bits IEEE-754 floating-point format).
- Specific values depend on the clock frequency for each model (usually, more on GeForces, less on Teslas).
- We can reach 1 PetaFLOPS with only 10 server racks.

Major innovations in core design:
- Dynamic parallelism.
- Thread scheduling (Hyper-Q).
2. Cores organization
A brief reminder of what CUDA is about
... and how the architecture scales up

<table>
<thead>
<tr>
<th>Architecture</th>
<th>G80</th>
<th>GT200</th>
<th>Fermi GF100</th>
<th>Fermi GF104</th>
<th>Kepler GK104</th>
<th>Kepler GK110</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDA Compute Capability (CCC)</td>
<td>1.0</td>
<td>1.2</td>
<td>2.0</td>
<td>2.1</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>N (multiprocs.)</td>
<td>16</td>
<td>30</td>
<td>16</td>
<td>7</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>M (cores/multip.)</td>
<td>8</td>
<td>8</td>
<td>32</td>
<td>48</td>
<td>192</td>
<td>192</td>
</tr>
<tr>
<td>Number of cores</td>
<td>128</td>
<td>240</td>
<td>512</td>
<td>336</td>
<td>1536</td>
<td>2880</td>
</tr>
</tbody>
</table>
High-end, mid-end and low-end cards: Applications and time frame (2012)

Supercomputing
Weather / Climate Modeling
Molecular Dynamics
Computational Physics

Life Sciences
Biochemistry
Bioinformatics
Material Science

Manufacturing
Structural Mechanics
Comp Fluid Dynamics (CFD)
Electromagnetics

Defense / Govt
Signal Processing
Image Processing
Video Analytics

Oil and Gas
Reverse Time Migration
Kirchoff Time Migration

Tesla M2090 (Q4)
Fermi
Tesla K20 (Q4)

Tesla M2075 (Q3)

Tesla K10 (Q2)
Kepler GK104

Kepler GK110 (Q2)
Kepler in perspective: Hardware resources and peak performance

<table>
<thead>
<tr>
<th>Tesla card (commercial model)</th>
<th>M2075</th>
<th>M2090</th>
<th>K10</th>
<th>K20</th>
<th>K20X</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU generation</td>
<td>Fermi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPU architecture</td>
<td>GF100</td>
<td>GK104</td>
<td>GK110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUDA Compute Capability (CCC)</td>
<td>2.0</td>
<td>3.0</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPUs per graphics card</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Multiprocessors x (cores/multiproc.)</td>
<td>14 x 32</td>
<td>16 x 32</td>
<td>8 x 192 (x2)</td>
<td>13 x 192</td>
<td>14 x 192</td>
</tr>
<tr>
<td>Total number of cores</td>
<td>448</td>
<td>512</td>
<td>1536 (x2)</td>
<td>2496</td>
<td>2688</td>
</tr>
<tr>
<td>Multiprocessor type</td>
<td>SM</td>
<td>SMX</td>
<td>SMX with dynamic parallelism and HyperQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transistors manufacturing process</td>
<td>40 nm.</td>
<td>40 nm.</td>
<td>28 nm.</td>
<td>28 nm.</td>
<td>28 nm.</td>
</tr>
<tr>
<td>GPU clock frequency (for graphics)</td>
<td>575 MHz</td>
<td>650 MHz</td>
<td>745 MHz</td>
<td>706 MHz</td>
<td>732 MHz</td>
</tr>
<tr>
<td>Core clock frequency (for GPGPU)</td>
<td>1150 MHz</td>
<td>1300 MHz</td>
<td>745 MHz</td>
<td>706 MHz</td>
<td>732 MHz</td>
</tr>
<tr>
<td>Number of single precision cores</td>
<td>448</td>
<td>512</td>
<td>1536 (x2)</td>
<td>2496</td>
<td>2688</td>
</tr>
<tr>
<td>GFLOPS (peak single precision)</td>
<td>1030</td>
<td>1331</td>
<td>2288 (x2)</td>
<td>3520</td>
<td>3950</td>
</tr>
<tr>
<td>Number of double precision cores</td>
<td>224</td>
<td>256</td>
<td>64 (x2)</td>
<td>832</td>
<td>896</td>
</tr>
<tr>
<td>GFLOPS (peak double precision)</td>
<td>515</td>
<td>665</td>
<td>95 (x2)</td>
<td>1170</td>
<td>1310</td>
</tr>
</tbody>
</table>

Manuel Ujaldon - Nvidia CUDA Fellow
Kepler in perspective: Power consumption

<table>
<thead>
<tr>
<th>Tesla card</th>
<th>M2075</th>
<th>M2090</th>
<th>K10</th>
<th>K20</th>
<th>K20X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of cores</td>
<td>448</td>
<td>512</td>
<td>1536 (x2)</td>
<td>2496</td>
<td>2688</td>
</tr>
<tr>
<td>Core clock frequency</td>
<td>1150 MHz</td>
<td>1300 MHz</td>
<td>745 MHz</td>
<td>706 MHz</td>
<td>732 MHz</td>
</tr>
<tr>
<td>Thermal design power</td>
<td>225 W</td>
<td>225 W</td>
<td>225 W</td>
<td>225 W</td>
<td>235 W</td>
</tr>
<tr>
<td>Number of single precision cores</td>
<td>448</td>
<td>512</td>
<td>1536 (x2)</td>
<td>2496</td>
<td>2688</td>
</tr>
<tr>
<td>GFLOPS (peak single precision)</td>
<td>1030</td>
<td>1331</td>
<td>2288 (x2)</td>
<td>3520</td>
<td>3950</td>
</tr>
<tr>
<td>GFLOPS per watt (single precision)</td>
<td>4.17</td>
<td>4.75</td>
<td>20.35</td>
<td>15.64</td>
<td>16.71</td>
</tr>
<tr>
<td>Number of double precision cores</td>
<td>224</td>
<td>256</td>
<td>64 (x2)</td>
<td>832</td>
<td>896</td>
</tr>
<tr>
<td>GFLOPS (peak double precision)</td>
<td>515</td>
<td>665</td>
<td>95 (x2)</td>
<td>1170</td>
<td>1310</td>
</tr>
<tr>
<td>GFLOPS per watt (double precision)</td>
<td>2.08</td>
<td>2.37</td>
<td>0.85</td>
<td>5.21</td>
<td>5.57</td>
</tr>
</tbody>
</table>
Kepler in perspective: Memory features

<table>
<thead>
<tr>
<th>Tesla card</th>
<th>M2075</th>
<th>M2090</th>
<th>K10</th>
<th>K20</th>
<th>K20X</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-bit register file / multiprocessor</td>
<td>32768</td>
<td>32768</td>
<td>65536</td>
<td>65536</td>
<td>65536</td>
</tr>
<tr>
<td>L1 cache + shared memory size</td>
<td>64 KB.</td>
<td>64 KB.</td>
<td>64 KB.</td>
<td>64 KB.</td>
<td>64 KB.</td>
</tr>
<tr>
<td>Width of 32 shared memory banks</td>
<td>32 bits</td>
<td>32 bits</td>
<td>64 bits</td>
<td>64 bits</td>
<td>64 bits</td>
</tr>
<tr>
<td>SRAM clock frequency (same as GPU)</td>
<td>575 MHz</td>
<td>650 MHz</td>
<td>745 MHz</td>
<td>706 MHz</td>
<td>732 MHz</td>
</tr>
<tr>
<td>L1 and shared memory bandwidth</td>
<td>73.6 GB/s</td>
<td>83.2 GB/s</td>
<td>190.7 GB/s</td>
<td>180.7 GB/s</td>
<td>187.3 GB/s</td>
</tr>
<tr>
<td>L2 cache size</td>
<td>768 KB.</td>
<td>768 KB.</td>
<td>768 KB.</td>
<td>1.25 MB.</td>
<td>1.5 MB.</td>
</tr>
<tr>
<td>L2 cache bandwidth (bytes per cycle)</td>
<td>384</td>
<td>384</td>
<td>512</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>L2 on atomic ops. (shared address)</td>
<td>1/9 per clk</td>
<td>1/9 per clk</td>
<td>1 per clk</td>
<td>1 per clk</td>
<td>1 per clk</td>
</tr>
<tr>
<td>L2 on atomic ops. (indep. address)</td>
<td>24 per clk</td>
<td>24 per clk</td>
<td>64 per clk</td>
<td>64 per clk</td>
<td>64 per clk</td>
</tr>
<tr>
<td>DRAM memory width</td>
<td>384 bits</td>
<td>384 bits</td>
<td>256 bits</td>
<td>320 bits</td>
<td>384 bits</td>
</tr>
<tr>
<td>DRAM memory clock (MHz)</td>
<td>2x 1500</td>
<td>2x 1850</td>
<td>2x 2500</td>
<td>2x 2600</td>
<td>2x 2600</td>
</tr>
<tr>
<td>DRAM bandwidth (GB/s, ECC off)</td>
<td>144</td>
<td>177</td>
<td>160 (x2)</td>
<td>208</td>
<td>250</td>
</tr>
<tr>
<td>DRAM generation</td>
<td>GDDR5</td>
<td>GDDR5</td>
<td>GDDR5</td>
<td>GDDR5</td>
<td>GDDR5</td>
</tr>
<tr>
<td>DRAM memory size in Gigabytes</td>
<td>6</td>
<td>6</td>
<td>4 (x2)</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Its predecessor Fermi
Kepler GK110: Physical layout of functional units
From SM multiprocessor in Fermi GF100 to multiprocessor SMX in Kepler GK110
3. Memory and data transport
Enhancements in memory and data transport

- **Integrated memory** on each SMX. Versus Fermi's SM multiprocessors, Kepler duplicates:
 - The size and bandwidth for the register file.
 - The bandwidth for the shared memory.
 - The size and bandwidth for the L1 cache memory.

- **Internal memory (L2 cache):** 1.5 Mbytes.

- **External memory (DRAM):** GDDR5 and 384-bits for the data path (frequency and size depend on the graphics card).

- **Interface with the host:**
 - PCI-express v. 3.0 (actual bandwidth depends on motherboard).
 - Closer dialogs among video memories belonging to different GPUs.
Differences in memory hierarchy: Fermi vs. Kepler

Kepler Memory Hierarchy

Thread

Shared Memory

L1 Cache

L2 Cache

DRAM

Thread

Shared Memory

L1 Cache

Read-Only Data Cache

L2 Cache

DRAM
Motivation for using the new data cache

- Additional 48 Kbytes to expand L1 cache size.
- Highest miss bandwidth.
- Avoids the texture unit.
- Allows a global address to be fetched and cached, using a pipeline different from that of L1/shared.
- Flexible (does not require aligned accesses).
- Eliminates texture setup.
- Managed automatically by compiler ("const__ restrict" indicates eligibility). Next slide shows an example.
How to use the new data cache

- Annotate eligible kernel parameters with "const __restrict"
- Compiler will automatically map loads to use read-only data cache path.

```c
__global__ void saxpy(float x, float y,
    const float * __restrict input,
    float * output)
{
    size_t offset = threadIdx.x +
        (blockIdx.x * blockDim.x);

    // Compiler will automatically use cache for "input"
    output[offset] = (input[offset] * x) + y;
}
```
The memory hierarchy in numbers

<table>
<thead>
<tr>
<th>GPU generation</th>
<th>Fermi</th>
<th>Kepler</th>
<th>Limitation</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware model</td>
<td>GF100</td>
<td>GF104</td>
<td>GK104</td>
<td>GK110</td>
</tr>
<tr>
<td>CUDA Compute Capability (CCC)</td>
<td>2.0</td>
<td>2.1</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Max. 32 bits registers / thread</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>255</td>
</tr>
<tr>
<td>32 bits registers / Multiprocessor</td>
<td>32 K</td>
<td>32 K</td>
<td>64 K</td>
<td>64 K</td>
</tr>
<tr>
<td>Shared memory / Multiprocessor</td>
<td>16-48KB</td>
<td>16-48KB</td>
<td>16-32-48KB</td>
<td>16-32-48 KB</td>
</tr>
<tr>
<td>L1 cache / Multiprocessor</td>
<td>48-16KB</td>
<td>48-16KB</td>
<td>48-32-16KB</td>
<td>48-32-16 KB</td>
</tr>
<tr>
<td>L2 cache / GPU</td>
<td>768 KB.</td>
<td>768 KB.</td>
<td>768 KB.</td>
<td>1536 KB.</td>
</tr>
</tbody>
</table>

All Fermi and Kepler models are endowed with:

- ECC (Error Correction Code) in the video memory controller.
- Address bus 64 bits wide.
- Data bus 64 bits wide for each memory controller (few models include 4 controllers for 256 bits, most have 6 controllers for 384 bits)
GPUDirect now supports RDMA [Remote Direct Memory Access]

This allows direct transfers between GPUs and network devices, for reducing the penalty on the extraordinary bandwidth of GDDR5 video memory.
4. Major software and hardware enhancements
Relaxing software constraints for massive parallelism

<table>
<thead>
<tr>
<th>GPU generation</th>
<th>Fermi</th>
<th>Kepler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware model</td>
<td>GF100</td>
<td>GF104</td>
</tr>
<tr>
<td>CUDA Compute Capability (CCC)</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Number of threads / warp (warp size)</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Max. number of warps / Multiprocessor</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Max. number of blocks / Multiprocessor</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Max. number of threads / Block</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>Max. number of threads / Multiprocessor</td>
<td>1536</td>
<td>1536</td>
</tr>
</tbody>
</table>

Crucial enhancement for Hyper-Q (see later)
Major hardware enhancements

Large scale computations (on huge problem sizes):

<table>
<thead>
<tr>
<th>GPU generation</th>
<th>Fermi</th>
<th>Kepler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware model</td>
<td>GF100</td>
<td>GF104</td>
</tr>
<tr>
<td>Compute Capability (CCC)</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Limitation</td>
<td>2^16-1</td>
<td>2^16-1</td>
</tr>
<tr>
<td>Impact</td>
<td>2^32-1</td>
<td>2^32-1</td>
</tr>
</tbody>
</table>

New architectural features:

<table>
<thead>
<tr>
<th>GPU generation</th>
<th>Fermi</th>
<th>Kepler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware model</td>
<td>GF100</td>
<td>GF104</td>
</tr>
<tr>
<td>Compute Capability (CCC)</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Limitation</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Dynamic Parallelism</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Impact</td>
<td>Software</td>
<td>Problem size</td>
</tr>
<tr>
<td>Hyper-Q</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Impact</td>
<td>Hardware</td>
<td>Problem structure</td>
</tr>
</tbody>
</table>

"Manuel Ujaldon - Nvidia CUDA Fellow"
The ability to launch new grids from the GPU:
- Dynamically: Based on run-time data.
- Simultaneously: From multiple threads at once.
- Independently: Each thread can launch a different grid.

Fermi: Only CPU can generate GPU work.

Kepler: GPU can generate work for itself.
The way we did things in the pre-Kepler era: The GPU is a slave for the CPU

High data bandwidth for communications:

- External: More than 10 GB/s (PCI-express 3).
- Internal: More than 100 GB/s (GDDR5 video memory and 384 bits, which is like a six channel CPU architecture).
The way we do things in Kepler: GPUs launch their own kernels

The pre-Kepler GPU is a co-processor

The Kepler GPU is autonomous: Dynamic parallelism

Now programs run faster and are expressed in a more natural way.
Watching the warps behaviour, we realize the GPU is far from being a regular processor.

Plenty of factors, unpredictable at run time, may transform the workload balance among multiprocessors into an impossible goal.

Look at the duration of 8 warps on each SM for the G80:
In Fermi, several CPU processes can send thread blocks to the same GPU, but a kernel cannot start its execution until the previous one has finished.

In Kepler, we can execute simultaneously up to 32 kernels launched from different:

- MPI processes, CPU threads (POSIX threads) or CUDA streams.

This increments the % of temporal occupancy on the GPU.
Without Hyper-Q: Multiprocess by temporal division

With Hyper-Q: Simultaneous multiprocess

CPU processes... mapped on GPU
5. Exploiting on Kepler the new capabilities
Six ways to improve our codes on Kepler

- Dynamic load balancing
- Thread scheduling
- Data-dependent execution
- Recursive parallel algorithms
- Library calls from kernels
- Simplify CPU/GPU divide

Dynamic parallelism and Hyper-Q on Kepler

Occupancy

Execution

Programmability
5.1. Dynamic load balancing
Dynamic work generation

Assign resources dynamically according to real-time demand, making easier the computation of irregular problems on GPU.

It broadens the application scope where it can be useful.

Coarse grid

Higher performance, lower accuracy

Fine grid

Lower performance, higher accuracy

Dynamic grid

Target performance where accuracy is required
Deploy parallelism based on level of detail

CUDA until 2012:
• The CPU launches kernels regularly.
• All pixels are treated the same.

CUDA on Kepler:
• The GPU launches a different number of kernels/blocks for each computational region.

Computational power allocated to regions of interest
5.2. Thread scheduling
The way GigaThread scheduling works

- Each grid provides a number of blocks, which are assigned to SMXs (up to 32 blocks per SMX in Kepler, 16 in Fermi).
- Blocks are split into warps (groups) of 32 threads.
- Warps are issued for each instruction in kernel threads (up to 64 active warps in Kepler, 48 in Fermi). Kepler's snapshot:
Grid management unit: Fermi vs. Kepler

Fermi
- Stream Queue (ordered queues of grids)
 - Stream 1: Kernel C, Kernel B, Kernel A
 - Stream 2: Kernel R, Kernel Q, Kernel P
 - Stream 3: Kernel Z, Kernel Y, Kernel X
- Work Distributor: Tracks blocks issued from grids
 - 16 active grids
- Grid management unit: Fermi
 - Single hardware queue multiplexing streams
 - CUDA Generated Work

Kepler GK110
- Stream Queue
 - Stream 1: C, B, A
 - Stream 2: R, Q, P
 - Stream 3: Z, Y, X
- Grid Management Unit: Pending & Suspended Grids
 - 1000s of pending grids
- Work Distributor: Actively dispatching grids
 - 32 active grids
- Parallel hardware streams
 - Allows suspending of grids

Manuel Ujaldon - Nvidia CUDA Fellow
The relation between software and hardware queues

Fermi:

But CUDA streams multiplex into a single queue

Chances for overlapping: Only at stream edges

Up to 16 grids can run at once on GPU hardware
The relation between software and hardware queues

Fermi:
- But CUDA streams multiplex into a single queue
- Up to 16 grids can run at once on GPU hardware
- Chances for overlapping: Only at stream edges

Kepler:
- No inter-stream dependencies
- Up to 32 grids can run at once on GPU hardware
- Concurrency at full-stream level

CUDA streams multiplex into a single queue

Stream 1:
- A -- B -- C

Stream 2:
- P -- Q -- R

Stream 3:
- X -- Y -- Z
A case study for exploiting GPU concurrency in Fermi (15 SMs) and Kepler (15 SMXs)

mykernel <<< 100, 128, ... >>>
[We have a deficit in warps]

- Launch 100 blocks of 128 threads (4 warps), that is, 400 warps.
- There are 26.66 warps for each multiprocessor, either SM or SMX.
 - On Fermi: Up to 48 active warps (21 below the limit), which cannot be exploited.
 - On Kepler: Up to 64 active warps (37 below the limit), which can be activated from up to 32 kernel calls from MPI processes, POSIX threads or CUDA streams.

mykernel <<< 100, 384, ... >>>

- Launch 100 blocks of 384 threads (12 warps), that is, 1200 warps.
- There are 80 warps for each multiprocessor. We've reached the max of 64 active warps, so 16 warps * 15 SMX = 240 warps wait on Kepler queues to be activated.

mykernel <<< 1000, 32, ... >>>
[We have a surplus in blocks]

- 66.66 blocks for each SMX, but the max. is 16. <100, 320> better.
Lessons to learn (and trade-offs involved)

Blocks big enough to avoid facing the limit of 16 per SMX.
But blocks consume shared memory, and allocating more shared memory means less blocks and more threads per block.

Threads per block big enough to saturate the limit of 64 active warps per SMX.
But threads consume registers, and using many registers means less threads per block and more blocks.

Hints:
Have at least 3-4 active blocks, each with at least 128 threads.
Smaller number of blocks when shared memory is critical, but...
... abusing of shared memory hurts concurrency and latency hiding.
A comparison between instructions issue and execution (front-end vs. back-end)

<table>
<thead>
<tr>
<th></th>
<th>SM-SMX fetch & issue (front-end)</th>
<th>SM-SMX execution (back-end)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermi (GF100)</td>
<td>Can issue 2 warps, 1 instruction each. Total: 2 warps per cycle. Active warps: 48 on each SM, chosen from up to 8 blocks. In GTX480: 15 * 48 = 720 active warps.</td>
<td>32 cores (1 warp) for "int" and "float". 16 cores for "double" (1/2 warp). 16 load/store units (1/2 warp). 4 special function units (1/8 warp). A total of up to 4 concurrent warps.</td>
</tr>
<tr>
<td>Kepler (GK110)</td>
<td>Can issue 4 warps, 2 instructions each. Total: 8 warps per cycle. Active warps: 64 on each SMX, chosen from up to 16 blocks. In K20: 13 * 64 = 832 active warps.</td>
<td>192 cores (6 warps) for "int" and "float". 64 cores for "double" (2 warps). 32 load/store units (1 warp). 32 special function units (1 warp). A total of up to 10 concurrent warps.</td>
</tr>
</tbody>
</table>

In Kepler, each SMX can issue 8 warp-instructions per cycle, but due to resources and dependencies limitations:

- 7 is the sustainable peak.
- 4-5 is a good amount for instruction-limited codes.
- Memory- or latency-bound codes by definition will reduce IPC (instrs. per cycle).
Great advantages of the GPU (vs. CPU) related to the CUDA work distributor

- Context switch is free because registers and shared memory are allocated exclusively to threads and blocks.
- The processor keeps busy as long as there are always many active warps to hide memory and dependencies stalls.
- Bottleneck is on the front-end, so schedulers are critical.
5.3. Data-dependent execution
Data-dependent parallelism

The simplest possible parallel program:

- Loops are parallelizable.
- Workload is known at compile-time.

```
for i = 1 to N
    for j = 1 to M
        convolution (i, j);
```

The simplest impossible program:

- Workload is unknown at compile-time.
- The challenge is data partitioning.

```
for i = 1 to N
    for j = 1 to max(x[i])
        convolution (i, j);
```

Poor solution #1: Oversubscription.
Poor solution #2: Serialization.
Now possible with dynamic parallelism: The two loops can be executed in parallel

The CUDA program for Kepler:

```c
__global__ void convolution(int x[])
{
    for j = 1 to x[blockIdx] // Each block launches x[blockIdx] ...
    kernel <<< ... >>> (blockIdx, j) // ... kernels from GPU
}

convolution <<< N, 1 >>> (x); // Launch N blocks of 1 thread
  // on GPU (rows start in parallel)
```

Up to 24 nested loops are allowed in CUDA 5.0.
5.4. Recursive parallel algorithms
Recursive parallel algorithms prior to Kepler

- Early CUDA programming model did not support recursion at all.
- CUDA started to support recursive functions in version 3.1, but they can easily crash if the size of the arguments is large.
- A user-defined stack in global memory can be employed instead, but at the cost of a significant performance penalty.
- An efficient solution is possible using dynamic parallelism.
A simple example of parallel recursion: Quicksort

Typical divide-and-conquer algorithm hard to do on Fermi:

- Entire data-dependent execution.
- Recursively partition-and-sort data.

```
3 2 2 6 3 9 1 4 5 8 1 8 7 9 2 5
2 2 1 1 2
1 1
3 4 3
1 1 2 2 2 3 3 4 5 5 6 7 8 8 9 9
```

![Quicksort diagram](image-url)
CUDA code for quicksort

Version for Fermi

```c
_global_ void qsort(int *data, int l, int r)
{
    int pivot = data[0];
    int *lptr = data+l, *rptr = data+r;
    // Partition data around pivot value
    partition(data, l, r, lptr, rptr, pivot);
    // Launch next stage recursively
    int rx = rptr-data; lx = lptr-data;
    if (l < rx)
        qsort<<<...>>>(data,l,rx);
    if (r > lx)
        qsort<<<...>>>(data,lx,r);
}
```

left- and right-hand sorts are serialized

Version for Kepler

```c
_global_ void qsort(int *data, int l, int r)
{
    int pivot = data[0];
    int *lptr = data+l, *rptr = data+r;
    // Partition data around pivot value
    partition(data, l, r, lptr, rptr, pivot);
    // Use streams this time for the recursion
    cudaStream_t s1, s2;
    cudaStreamCreateWithFlags(&s1, ...);
    cudaStreamCreateWithFlags(&s2, ...);
    int rx = rptr-data; lx = lptr-data;
    if (l < rx)
        qsort<<<...,0,s1>>>(data,l,rx);
    if (r > lx)
        qsort<<<...,0,s2>>>(data,lx,r);
}
```

Use separate streams to achieve concurrency
Experimental results for Quicksort

- The lines of code were reduced in half.
- Performance was improved by 2x.
5.5. Library calls from kernels
Programming model basics: CUDA run-time syntax & semantics

```c
__device__ float buf[1024];
__global__ void dynamic(float *data)
{
    int tid = threadIdx.x;
    if (tid % 2)
        buf[tid/2] = data[tid]+data[tid+1];
    __syncthreads();

    if (tid == 0) {
        launchkernel<<<128,256>>>(buf);
        cudaDeviceSynchronize();
    }
    __syncthreads();

    if (tid == 0) {
        cudaMemcpyAsync(data, buf, 1024);
        cudaDeviceSynchronize();
    }
}
```

This launch is per-thread
CUDA 5.0: Sync. all launches within my block
idle threads wait for the others here
CUDA 5.0: Only async. launches are allowed on data gathering
An example of simple library calls using cuBLAS (now available for CUDA 5.0)

```c
__global__ void libraryCall(float *a,
    float *b,
    float *c)
{
    // All threads generate data
    createData(a, b);
    __syncthreads();

    // The first thread calls library
    if (threadIdx.x == 0) {
        cublasDgemm(a, b, c);
        cudaMemcpyDeviceToHost(c);
    }

    // All threads wait for results
    __syncthreads();

    consumeData(c);
}
```
__global__ void libraryCall(float *a, float *b, float *c)
{
 // All threads generate data
 createData(a, b);
 __syncthreads();

 // The first thread calls library
 if (threadIdx.x == 0) {
 cublasDgemm(a, b, c);
 cudaDeviceSynchronize();
 }

 // All threads wait for results
 __syncthreads();

 consumeData(c);
}

Per-thread execution
Single call to external library function:
- The library will generate the child-block.
- But we synchronize in the father-block.

Synchronize only launching threads:
- Otherwise, race conditions may occur between father and child.

Father and child are different blocks, so:
- Local and shared memory from father cannot be used in child.
- Requires to copy values into global memory to be passed as kernel arguments to child.

All threads must wait before parallel data use
5.6. Simplify the CPU/GPU division
A direct solver in matrix algebra: LU decomposition

Version for Fermi

<table>
<thead>
<tr>
<th>CPU side</th>
<th>GPU side</th>
</tr>
</thead>
<tbody>
<tr>
<td>dgetrf(N, N) {</td>
<td>dgetrf(N, N) {</td>
</tr>
<tr>
<td>for j=1 to N {</td>
<td>for j=1 to N {</td>
</tr>
<tr>
<td>for i=1 to 64 {</td>
<td>for i=1 to 64 {</td>
</tr>
<tr>
<td>idamax<<<...>>></td>
<td>idamax();</td>
</tr>
<tr>
<td>memcpy</td>
<td>dswap();</td>
</tr>
<tr>
<td>dswap<<<...>>></td>
<td>memcpy</td>
</tr>
<tr>
<td>dscal<<<...>>></td>
<td>dscal();</td>
</tr>
<tr>
<td>dger<<<...>>></td>
<td>dger();</td>
</tr>
<tr>
<td>}</td>
<td>}</td>
</tr>
<tr>
<td>memcpy</td>
<td>dlaswap<<<...>>></td>
</tr>
<tr>
<td>dlaswap<<<...>>></td>
<td>dtrsm<<<...>>></td>
</tr>
<tr>
<td>dtrsm<<<...>>></td>
<td>dgemm<<<...>>></td>
</tr>
<tr>
<td>dgemm<<<...>>></td>
<td>}</td>
</tr>
</tbody>
</table>

CPU fully occupied controlling launches

Version for Kepler

<table>
<thead>
<tr>
<th>CPU side</th>
<th>GPU side</th>
</tr>
</thead>
<tbody>
<tr>
<td>dgetrf(N, N) {</td>
<td>dgetrf(N, N) {</td>
</tr>
<tr>
<td>for j=1 to N {</td>
<td>for j=1 to N {</td>
</tr>
<tr>
<td>for i=1 to 64 {</td>
<td>for i=1 to 64 {</td>
</tr>
<tr>
<td>idamax<<<...>>></td>
<td>idamax();</td>
</tr>
<tr>
<td>dswap<<<...>>></td>
<td>dswap();</td>
</tr>
<tr>
<td>dscal<<<...>>></td>
<td>dscal();</td>
</tr>
<tr>
<td>dger<<<...>>></td>
<td>dger();</td>
</tr>
<tr>
<td>}</td>
<td>}</td>
</tr>
<tr>
<td>dlaswap<<<...>>></td>
<td>dtrsm<<<...>>></td>
</tr>
<tr>
<td>dtrsm<<<...>>></td>
<td>dgemm<<<...>>></td>
</tr>
<tr>
<td>dgemm<<<...>>></td>
<td>}</td>
</tr>
</tbody>
</table>

Batched LU, release CPU for other work

Manuel Ujaldon - Nvidia CUDA Fellow
Extended gains when our task involves thousands of LUs on different matrices

- **CPU-controlled work batching:**
 - Serialize LU calls, or
 - Face parallel P-threads limitations (10s).

- **Batching via dynamic parallelism:**
 - Move top loops to GPU and launch 1000s of batches in parallel from GPU threads.
Concluding remarks

Kepler represents the architectural design for 2012-2013, ready to host thousands of cores on a single die. It relies less on frequency and manufacturing process, more on power consumption and programmability, improving CUDA for irregular and dynamic applications.

The GPU is more autonomous, but at the same time allows more interaction with the CPU.

The memory hierarchy is also improved extensively, as well as the connection among GPUs.

SMX-DRAM interconnect will play a decisive factor in future developments.
Bibliography

Kepler whitepaper:

CUDA documentation:

Webinars (from GTC'12 to GTC'13, recent updates):

Highly recommended:
- "CUDA 5 and beyond" [by Mark Harris].
- "Compiling CUDA and other languages for GPUs" [Vinod Grover & Yuan Lin].
- "New features in the CUDA programming model" [Stephen Jones & Lars Nyland].
- "Introduction to dynamic parallelism" [Stephen Jones].
- "Inside the Kepler Tesla K20 family" [Julia Levites & Stephen Jones].
Thanks for coming!

You can always reach me in Spain at the Computer Architecture Department of the University of Malaga:

- e-mail: ujaldon@uma.es
- Phone: +34 952 13 28 24.

Or, more specifically on GPUs, visit my web page as Nvidia CUDA Fellow:

- http://research.nvidia.com/users/manuel-ujaldon