
Inside Kepler

Manuel Ujaldon
Nvidia CUDA Fellow

Computer Architecture Department
University of Malaga (Spain)

Talk outline [46 slides]

1. Introducing the architecture [2]
2. Cores organization [9]
3. Memory and data transport [6]
4. Major software and hardware enhancements [8]

1. Software: Relaxing constraints on massive parallelism.

2. Hardware: Grid dimensions, dynamic parallelism and Hyper-Q.

5. Exploiting on Kepler the new capabilities [21]
1. Dynamic load balancing [2].

2. Thread scheduling [8].
3. Data-dependent execution [2].
4. Recursive parallel algorithms [4].

5. Library calls from kernels [3].
6. Simplify CPU/GPU division [2]. 2

1. Introducing the architecture

3

The three pillars of Kepler

4

Performance

Programmability

Power consumption

Summary of the most outstanding features

Manufacturing: 7100 million trans. @ 28 nm. by TSMC.
Architecture: Between 7 and 15 multiprocessors SMX,

endowed with 192 cores each.
The number of multiprocessors depends of the GK version [GKxxx].

Arithmetic: More than 1 TeraFLOP in double precision
(64 bits IEEE-754 floating-poing format).

Specific values depend on the clock frequency for each model
(usually, more on GeForces, less on Teslas).

We can reach 1 PetaFLOPS with only 10 server racks.

Major innovations in core design:
Dynamic parallelism.
Thread scheduling (Hyper-Q).

5

2. Cores organization

6

CPU (1 core)
gcc -O3

Transferencia CPU-GPU

Cómputo en GPU

Transferencia GPU-CPU

Tiempo total

A brief reminder of what CUDA is about

7

... and how the architecture scales up

8

Architecture

Time frame

CUDA Compute
Capability (CCC)

G80 GT200
Fermi
GF100

Fermi
GF104

Kepler
GK104

Kepler
GK110

2006-07 2008-09 2010 2011 2012 2013

1.0 1.2 2.0 2.1 3.0 3.5

N (multiprocs.)

M (cores/multip.)

Number of cores

16 30 16 7 8 15

8 8 32 48 192 192

128 240 512 336 1536 2880

High-end, mid-end and low-end cards:
Applications and time frame (2012)

9

Kepler in perspective:
Hardware resources and peak performance

10

Tesla card (commercial model)

GPU generation

GPU architecture

CUDA Compute Capability (CCC)

M2075 M2090 K10 K20 K20X

FermiFermi KeplerKeplerKepler

GF100GF100 GK104 GK110GK110

2.02.0 3.0 3.53.5

GPUs per graphics card

Multiprocessors x (cores/multiproc.)

Total number of cores

Multiprocessor type

Transistors manufacturing process

GPU clock frequency (for graphics)

Core clock frequency (for GPGPU)

Number of single precision cores

GFLOPS (peak single precision)

Number of double precision cores

GFLOPS (peak double precision)

1 1 2 1 1

14 x 32 16 x 32 8 x 192 (x2) 13 x 192 14 x 192

448 512 1536 (x2) 2496 2688

SMSM SMX SMX with dynamic
parallelism and HyperQ

SMX with dynamic
parallelism and HyperQ

40 nm. 40 nm. 28 nm. 28 nm. 28 nm.

575 MHz 650 MHz 745 MHz 706 MHz 732 MHz

1150 MHz 1300 MHz 745 MHz 706 MHz 732 MHz

448 512 1536 (x2) 2496 2688

1030 1331 2288 (x2) 3520 3950

224 256 64 (x2) 832 896

515 665 95 (x2) 1170 1310

Kepler in perspective: Power consumption

11

Tesla card M2075 M2090 K10 K20 K20X

Total number of cores

Core clock frequency

Thermal design power

Number of single precision cores

GFLOPS (peak single precision)

GFLOPS per watt (single precision)

Number of double precision cores

GFLOPS (peak double precision)

GFLOPS per watt (double precision)

448 512 1536 (x2) 2496 2688

1150 MHz 1300 MHz 745 MHz 706 MHz 732 MHz

225 W 225 W 225 W 225 W 235 W

448 512 1536 (x2) 2496 2688

1030 1331 2288 (x2) 3520 3950

4.17 4.75 20.35 15.64 16.71

224 256 64 (x2) 832 896

515 665 95 (x2) 1170 1310

2.08 2.37 0.85 5.21 5.57

Kepler in perspective: Memory features

12

Tesla card M2075 M2090 K10 K20 K20X

32-bit register file / multiprocessor

L1 cache + shared memory size

Width of 32 shared memory banks

SRAM clock frequency (same as GPU)

L1 and shared memory bandwidth

L2 cache size

L2 cache bandwidth (bytes per cycle)

L2 on atomic ops. (shared address)

L2 on atomic ops. (indep. address)

DRAM memory width

DRAM memory clock (MHz)

DRAM bandwidth (GB/s, ECC off)

DRAM generation

DRAM memory size in Gigabytes

32768 32768 65536 65536 65536

64 KB. 64 KB. 64 KB. 64 KB. 64 KB.

32 bits 32 bits 64 bits 64 bits 64 bits

575 MHz 650 MHz 745 MHz 706 MHz 732 MHz

73.6 GB/s. 83.2 GB/s. 190.7 GB/s 180.7 GB/s 187.3 GB/s

768 KB. 768 KB. 768 KB. 1.25 MB. 1.5 MB.

384 384 512 1024 1024

1/9 per clk 1/9 per clk 1 per clk 1 per clk 1 per clk

24 per clk 24 per clk 64 per clk 64 per clk 64 per clk

384 bits 384 bits 256 bits 320 bits 384 bits

2x 1500 2x 1850 2x 2500 2x 2600 2x 2600

144 177 160 (x2) 208 250

GDDR5 GDDR5 GDDR5 GDDR5 GDDR5

6 6 4 (x2) 5 6

Its predecessor Fermi

13

Kepler GK110:
Physical layout of functional units

14

From SM multiprocessor in Fermi GF100
to multiprocessor SMX in Kepler GK110

15

3. Memory and data transport

16

Enhancements in memory and data transport

Integrated memory on each SMX. Versus Fermi's SM
multiprocessors, Kepler duplicates:

The size and bandwidth for the register file.
The bandwidth for the shared memory.
The size and bandwidth for the L1 cache memory.

Internal memory (L2 cache): 1.5 Mbytes.
External memory (DRAM): GDDR5 and 384-bits for the

data path (frequency and size depend on the graphics card).
Interface with the host:

PCI-express v. 3.0 (actual bandwidth depends on motherboard).
Closer dialogs among video memories belonging to different GPUs.

17

Differences in memory hierarchy:
Fermi vs. Kepler

18

Motivation for using the new data cache

Additional 48 Kbytes to expand L1 cache size.
Highest miss bandwidth.
Avoids the texture unit.
Allows a global address to be fetched and cached, using a

pipeline different from that of L1/shared.
Flexible (does not require aligned accesses).
Eliminates texture setup.
Managed automatically by compiler ("const__ restrict"

indicates eligibility). Next slide shows an example.

19

Annotate eligible kernel parameters with "const __restrict"
Compiler will automatically map loads to use read-only

data cache path.

__global__ void saxpy(float x, float y,
 const float * __restrict input,
 float * output)
{
 size_t offset = threadIdx.x +
 (blockIdx.x * blockDim.x);

 // Compiler will automatically use cache for "input"
 output[offset] = (input[offset] * x) + y;
}

How to use the new data cache

20

The memory hierarchy in numbers

21

All Fermi and Kepler models are endowed with:
ECC (Error Correction Code) in the video memory controller.
Address bus 64 bits wide.
Data bus 64 bits wide for each memory controller (few models

include 4 controllers for 256 bits, most have 6 controllers for 384 bits)

GPU generation

Hardware model

CUDA Compute Capability (CCC)

FermiFermi KeplerKepler
Limi-
tation

ImpactGF100 GF104 GK104 GK110 Limi-
tation

Impact

2.0 2.1 3.0 3.5

Limi-
tation

Impact

Max. 32 bits registers / thread

32 bits registers / Multiprocessor

Shared memory / Multiprocessor

L1 cache / Multiprocessor

L2 cache / GPU

63 63 63 255 SW. Working set

32 K 32 K 64 K 64 K HW. Working set

16-48KB 16-48KB 16-32-48KB 16-32-48 KB HW. Tile size

48-16KB 48-16KB 48-32-16KB 48-32-16 KB HW. Access
speed

768 KB. 768 KB. 768 KB. 1536 KB. HW. Access
speed

GPUDirect now supports RDMA
[Remote Direct Memory Access]

This allows direct transfers between GPUs and network
devices, for reducing the penalty on the extraordinary
bandwidth of GDDR5 video memory.

22

4. Major software and
hardware enhancements

23

Relaxing software constraints
for massive parallelism

24

GPU generation

Hardware model

CUDA Compute Capability (CCC)

FermiFermi KeplerKepler

GF100 GF104 GK104 GK110

2.0 2.1 3.0 3.5

Number of threads / warp (warp size)

Max. number of warps / Multiprocessor

Max. number of blocks / Multiprocessor

Max. number of threads / Block

Max. number of threads / Multiprocessor

32 32 32 32

48 48 64 64

8 8 16 16

1024 1024 1024 1024

1536 1536 2048 2048

Crucial enhancement
for Hyper-Q (see later)

Major hardware enhancements

Large scale computations (on huge problem sizes):

25

New architectural features:

GPU generation

Hardware model

Compute Capability (CCC)

FermiFermi KeplerKepler

Limitation ImpactGF100 GF104 GK104 GK110 Limitation Impact

2.0 2.1 3.0 3.5

Limitation Impact

Max. grid size (on X dimension) 2^16-1 2^16-1 2^32-1 2^32-1 Software Problem size

GPU generation

Hardware model

Compute Capability (CCC)

FermiFermi KeplerKepler

Limitation ImpactGF100 GF104 GK104 GK110 Limitation Impact

2.0 2.1 3.0 3.5

Limitation Impact

Dynamic Parallelism

Hyper-Q

No No No Yes Hardware Problem
structure

No No No Yes Hardware Thread
scheduling

The ability to launch new grids from the GPU:
Dynamically: Based on run-time data.
Simultaneously: From multiple threads at once.
Independently: Each thread can launch a different grid.

What is dynamic parallelism?

26

Fermi: Only CPU
can generate GPU work.

Kepler: GPU can
generate work for itself.

CPU GPU CPU GPU

The way we did things in the pre-Kepler era:
The GPU is a slave for the CPU

High data bandwidth for communications:
External: More than 10 GB/s (PCI-express 3).
Internal: More than 100 GB/s (GDDR5 video memory and 384 bits,

which is like a six channel CPU architecture).

27

Operation 1 Operation 2 Operation 3

Init
Alloc

Function Lib Lib Function Function

CPU

GPU

28

CPU GPU CPU GPU

The pre-Kepler GPU is a co-processor

Now programs run faster and

The way we do things in Kepler:
GPUs launch their own kernels

The Kepler GPU is autonomous:
Dynamic parallelism

are expressed in a more natural way.

Watching the warps behaviour, we realize the
GPU is far from being a regular processor

 Plenty of factors, unpredictable at run time, may transform
the workload balance among multiprocessors into an
impossible goal.

 Look at the duration of 8 warps on each SM for the G80:

29

In Fermi, several CPU processes can send thread blocks to
the same GPU, but a kernel cannot start its execution until
the previous one has finished.

In Kepler, we can execute simultaneously up to 32 kernels
launched from different:

 MPI processes, CPU threads (POSIX threads) or CUDA streams.

This increments the % of temporal occupancy on the GPU.

Hyper-Q

30

FERMI
1 MPI Task at a Time

KEPLER
32 Simultaneous MPI Tasks

...mapped on GPU 31

E

F

D

C

B

A

CPU processes...

Without Hyper-Q: Multiprocess by temporal division

A B C D E F

100

50

%
 G

PU
 u

til
iz

at
io

n

0
Time

Time saved
0

A

A
A

B

B B

C

C
C

D

D

D

E

E

E

F

F

F

With Hyper-Q: Symultaneous multiprocess
100

50

%
 G

PU
 u

til
iz

at
io

n

0

5. Exploiting on Kepler
the new capabilities

32

Six ways to improve our codes on Kepler

33

Dynamic
parallelism

and Hyper-Q
on Kepler

Occupancy

Execution

Programmability

Thread scheduling

Dynamic load balancing

Data-dependent execution

Recursive parallel algorithms

Library calls from kernels

Simplify CPU/GPU divide

5.1. Dynamic load
balancing

34

Assign resources dynamically according to real-time
demand, making easier the computation of irregular
problems on GPU.

It broadens the application scope where it can be useful.

Dynamic work generation

35

Coarse grid Fine grid Dynamic grid

Higher performance,
lower accuracy

Target performance
where accuracy is required

Lower performance,
higher accuracy

Deploy parallelism based on level of detail

36

CUDA until 2012:
• The CPU launches
kernels regularly.
• All pixels are treated
the same.

CUDA on Kepler:
• The GPU launches a
different number of
kernels/blocks for each
computational region.

Computational power
allocated to regions

of interest

5.2. Thread
scheduling

37

The way GigaThread scheduling works

Each grid provides a number of blocks, which are assigned
to SMXs (up to 32 blocks per SMX in Kepler, 16 in Fermi).

Blocks are split into warps (groups) of 32 threads.
Warps are issued for each instruction in kernel threads (up

to 64 active warps in Kepler, 48 in Fermi). Kepler's snapshot:

38

Work Distributor
Tracks blocks issued from grids

16 active grids

Stream Queue
(ordered queues of grids)

Kernel C

Kernel B

Kernel A

Kernel Z

Kernel Y

Kernel X

Kernel R

Kernel Q

Kernel P

Stream 1 Stream 2 Stream 3

Grid management unit: Fermi vs. Kepler

39

Work Distributor
Actively dispatching grids

32 active grids

Stream Queue
C

B

A

R

Q

P

Z

Y

X

Grid Management Unit
Pending & Suspended Grids

1000s of pending grids

SMX SMX SMX SMXSM SM SM SM

Fermi Kepler GK110

CU
D

A
G

en
er

at
ed

 W
or

k

Single hardware queue
multiplexing streams

Parallel hardware streams

Allows suspending of grids

The relation between
software and hardware queues

40

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

Chances for overlapping: Only at stream edges

A--B--C P--Q--R X--Y--Z
Up to 16 grids

can run at once
on GPU hardware

But CUDA streams multiplex into a single queue
Fermi:

The relation between
software and hardware queues

41

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

Chances for overlapping: Only at stream edges

A--B--C P--Q--R X--Y--Z
Up to 16 grids

can run at once
on GPU hardware

But CUDA streams multiplex into a single queue
Fermi:

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3Concurrency at full-stream level

P--Q--R
Up to 32 grids

can run at once
on GPU hardware

No inter-stream dependenciesKepler:

A--B--C

X--Y--Z

A case study for exploiting GPU concurrency
in Fermi (15 SMs) and Kepler (15 SMXs)

mykernel <<< 100, 128, ... >>> [We have a deficit in warps]

Launch 100 blocks of 128 threads (4 warps), that is, 400 warps.
There are 26.66 warps for each multiprocessor, either SM or SMX.

On Fermi: Up to 48 active warps (21 below the limit), which cannot be exploited.
On Kepler: Up to 64 active warps (37 below the limit), which can be activated

from up to 32 kernel calls from MPI processes, POSIX threads or CUDA streams.

mykernel <<< 100, 384, ... >>>
Launch 100 blocks of 384 threads (12 warps), that is, 1200 warps.
There are 80 warps for each multiprocessor. We've reached the max

of 64 active warps, so 16 warps * 15 SMX = 240 warps wait on
Kepler queues to be activated.

mykernel <<< 1000, 32, ... >>> [We have a surplus in blocks]

66.66 blocks for each SMX, but the max. is 16. <100, 320> better.
42

Lessons to learn (and trade-offs involved)

Blocks big enough to avoid facing the limit of 16 per SMX.
But blocks consume shared memory, and allocating more shared

memory means less blocks and more threads per block.

Threads per block big enough to saturate the limit of 64
active warps per SMX.

But threads consume registers, and using many registers means
less threads per block and more blocks.

Hints:
Have at least 3-4 active blocks, each with at least 128 threads.
Smaller number of blocks when shared memory is critical, but...
... abusing of shared memory hurts concurrency and latency hiding.

43

A comparison between instructions issue
and execution (front-end vs. back-end)

In Kepler, each SMX can issue 8 warp-instructions per cycle, but due
to resources and dependencies limitations:

7 is the sustainable peak.
4-5 is a good amount for instruction-limited codes.
Memory- or latency-bound codes by definition will reduce IPC (instrs. per cycle).

44

SM-SMX fetch & issue (front-end) SM-SMX execution (back-end)

Fermi (GF100)

Kepler (GK110)

Can issue 2 warps, 1 instruction each.
Total: 2 warps per cycle.
Active warps: 48 on each SM,
chosen from up to 8 blocks.
In GTX480: 15 * 48 = 720 active warps.

32 cores (1 warp) for "int" and "float".
16 cores for "double" (1/2 warp).
16 load/store units (1/2 warp).
4 special function units (1/8 warp).
A total of up to 4 concurrent warps.

Can issue 4 warps, 2 instructions each.
Total: 8 warps per cycle.
Active warps: 64 on each SMX,
chosen from up to 16 blocks.
In K20: 13 * 64 = 832 active warps.

192 cores (6 warps) for "int" and "float".
64 cores for "double" (2 warps).
32 load/store units (1 warp).
32 special function units (1 warp).
A total of up to 10 concurrent warps.

Great advantages of the GPU (vs. CPU)
related to the CUDA work distributor

Context switch is free because registers and shared
memory are allocated exclusively to threads and blocks.

The processor keeps busy as long as there are always
many active warps to hide memory and dependencies stalls.

Bottleneck is on the front-end, so schedulers are critical.

45

5.3. Data-dependent
execution

46

The simplest possible parallel program:
Loops are parallelizable.
Workload is known at compile-time.

The simplest impossible program:
Workload is unknown at compile-time.
The challenge is data partitioning.

Data-dependent parallelism

47

for i = 1 to N
 for j = 1 to x[i]
 convolution (i, j);

for i = 1 to N
 for j = 1 to M
 convolution (i, j);

M

N

max(x[i])

N

Poor solution #1: Oversubscription.
Poor solution #2: Serialization.

The CUDA program for Kepler:

Now possible with dynamic parallelism:
The two loops can be executed in parallel

48

__global__ void convolution(int x[])
{
 for j = 1 to x[blockIdx] // Each block launches x[blockIdx] ...
 kernel <<< ... >>> (blockIdx, j) // ... kernels from GPU
}

convolution <<< N, 1 >>> (x); // Launch N blocks of 1 thread
 // on GPU (rows start in parallel)

N
 b

lo
ck

s

x[blockIdx] kernel calls

Up to 24 nested loops
are allowed in CUDA 5.0.

5.4. Recursive parallel
algorithms

49

Recursive parallel algorithms prior to Kepler

Early CUDA programming model did not support recursion
at all.

CUDA started to support recursive functions in version 3.1,
but they can easily crash if the size of the arguments is large.

A user-defined stack in global memory can be employed
instead, but at the cost of a significant performance penalty.

An efficient solution is possible using dynamic parallelism.

50

A simple example of parallel recursion:
Quicksort

Typical divide-and-conquer algorithm hard to do on Fermi:
Entire data-dependent execution.
Recursively partition-and-sort data.

51

CUDA code for quicksort

52

Version for Fermi Version for Kepler
global void qsort(int *data, int l, int r)
{

 int pivot = data[0];
 int *lptr = data+l, *rptr = data+r;
 // Partition data around pivot value

 partition(data, l, r, lptr, rptr, pivot);

 // Launch next stage recursively
 int rx = rptr-data; lx = lptr-data;

 if (l < rx)
 qsort<<<...>>>(data,l,rx);
 if (r > lx)

 qsort<<<...>>>(data,lx,r);
}

global void qsort(int *data, int l, int r)
{

 int pivot = data[0];
 int *lptr = data+l, *rptr = data+r;
 // Partition data around pivot value

 partition(data, l, r, lptr, rptr, pivot);

 // Use streams this time for the recursion
 cudaStream_t s1, s2;
 cudaStreamCreateWithFlags(&s1, ...);

 cudaStreamCreateWithFlags(&s2, ...);
 int rx = rptr-data; lx = lptr-data;

 if (l < rx)
 qsort<<<...,0,s1>>>(data,l,rx);
 if (r > lx)

 qsort<<<...,0,s2>>>(data,lx,r);
}

left- and right-hand sorts are serialized Use separate streams to achieve concurrency

Experimental results for Quicksort

The lines of code were reduced in half.
Performance was improved by 2x.

53

5.5. Library calls
from kernels

54

Programming model basics:
CUDA run-time syntax & semantics

55

__device__ float buf[1024];
__global__ void dynamic(float *data)
{
 int tid = threadIdx.x;
 if (tid % 2)
 buf[tid/2] = data[tid]+data[tid+1];
 __syncthreads();

 if (tid == 0) {
 launchkernel<<<128,256>>>(buf);
 cudaDeviceSynchronize();
 }
 __syncthreads();

 if (tid == 0) {
 cudaMemCpyAsync(data, buf, 1024);
 cudaDeviceSynchronize();
 }
}

This launch is per-thread
CUDA 5.0: Sync. all launches within my block

idle threads wait for the others here

CUDA 5.0: Only async. launches
are allowed on data gathering

An example of simple library calls
using cuBLAS (now available for CUDA 5.0)

56

__global__ void libraryCall(float *a,
 float *b,
 float *c)
{
 // All threads generate data
 createData(a, b);
 __syncthreads();

 // The first thread calls library
 if (threadIdx.x == 0) {
 cublasDgemm(a, b, c);
 cudaDeviceSynchronize();
 }

 // All threads wait for results
 __syncthreads();

 consumeData(c);
}

CPU launches
kernel

Per-block
data

generation

Call of 3rd
party library

3rd party
library

executes

Parallel
use

of result

The father-child relationship in CUDA blocks

57

__global__ void libraryCall(float *a,
 float *b,
 float *c)
{
 // All threads generate data
 createData(a, b);
 __syncthreads();

 // The first thread calls library
 if (threadIdx.x == 0) {
 cublasDgemm(a, b, c);
 cudaDeviceSynchronize();
 }

 // All threads wait for results
 __syncthreads();

 consumeData(c);
}

Per-thread execution

Single call to external library function:
- The library will generate the child-block.
- But we synchronize in the father-block.

Synchronize only launching threads:
- Otherwise, race conditions may occur
between father and child.

All threads must wait before parallel data use

Father and child are different blocks, so:
- Local and shared memory from father
cannot be used in child.
- Requires to copy values into global memory
to be passed as kernel arguments to child.

5.6. Simplify the
CPU/GPU division

58

Version for Fermi Version for Kepler
 CPU side GPU side
dgetrf(N, N)} {

 for j=1 to N {
 for i=1 to 64 {
 idamax<<<...>>> idamax();

 memcpy
 dswap<<<...>>> dswap();

 memcpy
 dscal<<<...>>> dscal();
 dger<<<...>>> dger();

 }
 memcpy

 dlaswap<<<...>>> dlaswap();
 dtrsm<<<...>>> dtrsm();
 dgemm<<<...>>> dgemm();

 }
}

 CPU side GPU side
dgetrf(N, N) {

 dgetrf<<<...>>> dgetrf(N, N) {
 for j=1 to N {
 for i=1 to 64 {

 idamax<<<...>>>
 dswap<<<...>>>

 dscal<<<...>>>
 dger<<<...>>>
 }

 dlaswap<<<...>>>
 dtrsm<<<...>>>

 dgemm<<<...>>>
 }
 }

 synchronize();
}

CPU fully occupied controlling launches Batched LU, release CPU for other work

A direct solver in matrix algebra:
LU decomposition

59

Extended gains when our task involves
thousands of LUs on different matrices

CPU-controlled work batching:
Serialize LU calls, or
Face parallel P-threads limitations (10s).

60

dgetf2 dgetf2 dgetf2

CPU control thread

CPU control thread

CPU control thread

dswap dswap dswap

CPU control thread

dtrsm dtrsm dtrsm

CPU control thread

dgemm dgemm dgemm

Batching via dynamic parallelism:

Move top loops to GPU and launch 1000s
of batches in parallel from GPU threads.

CPU control thread

CPU control thread

dgetf2

dswap

dtrsm

dgemm

GPU control
thread

dgetf2

dswap

dtrsm

dgemm

GPU control
thread

dgetf2

dswap

dtrsm

dgemm

GPU control
thread

Concluding remarks

 Kepler represents the architectural design for 2012-2013,
ready to host thousands of cores on a single die.

 It relies less on frequency and manufacturing process,
more on power consumption and programmability,
improving CUDA for irregular and dynamic applications.

 The GPU is more autonomous, but at the same time
allows more interaction with the CPU.

 The memory hierarchy is also improved extensively, as
well as the connection among GPUs.

 SMX-DRAM interconnect will play a decisive factor in
future developments.

61

Bibliography

Kepler whitepaper:
http://www.nvidia.com/object/nvidia-kepler.html

CUDA documentation:
Best Practices Guide: http://docs.nvidia.com/cuda/cuda-c-best-practices-guide

Kepler Tuning Guide: http://docs.nvidia.com/cuda/kepler-tuning-guide

Webinars (from GTC'12 to GTC'13, recent updates):
http://www.nvidia.com/object/webinar.html
Highly recommended:

"CUDA 5 and beyond" [by Mark Harris].
"Compiling CUDA and other languages for GPUs" [Vinod Grover & Yuan Lin].
"New features in the CUDA programming model" [Stephen Jones & Lars Nyland].
"Introduction to dynamic parallelism" [Stephen Jones].
"Inside the Kepler Tesla K20 family" [Julia Levites & Stephen Jones].

62

Thanks for coming!

You can always reach me in Spain
at the Computer Architecture Department
of the University of Malaga:

e-mail: ujaldon@uma.es
Phone: +34 952 13 28 24.
Web page: http://manuel.ujaldon.es

(english/spanish versions available).

Or, more specifically on GPUs,
visit my web page as Nvidia CUDA Fellow:

http://research.nvidia.com/users/manuel-ujaldon

63

