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Optimization cycle

Assess

Parallelise

Optimise

Test



Profile

● Identify the function or functions in which the 
application is spending most of its execution time.

● CPU code:
–gprof

–valgrind

–oprofile

● Identifying hotspots



Parallelize

● Use existing libraries

● Code to expose parallelism



Optimizing CUDA code

● Using CPU Timers
–CudaDeviceSynchronize()

– cudaEventSynchronize()

● Using CUDA GPU Timers
– cudaEventCreate(&start)

–CudaEventElapsedTime()

● Bandwidth
–How, when



Data Transfer Between Host and Device

● Minimize data transfer between the host and the device. 
Even if that means running kernels on the GPU that do 
not demonstrate any speedup compared with running 
them on the host CPU.

● Keep it in device memory

● Batch many small transfers into one larger transfer

● Use page-locked (or pinned) memory
–CudaHostAlloc()



Asynchronous and Overlapping memory Transfers with 
Computation

● A stream is simply a sequence of operations that are 
performed in order on the device. Operations in different 
streams can be interleaved and in some cases overlapped - a 
property that can be used to hide data transfers between the 
host and the device.
– cudaStreamCreate(&stream1);

– Default stream - no explicit synchronization is 
needed always sequential.

● Some devices are capable of concurrent copy and compute
– cudaMemcpy() is blocking

– cudaMemcpyAsync() is a non-blocking

● kernel<<<grid, block, 0, stream2>>>(data...);



Concurrent copy and execute

• cudaStreamCreate(&stream1);

• cudaStreamCreate(&stream2);

• cudaMemcpyAsync(a_d, a_h, size, 
cudaMemcpyHostToDevice, stream1);

• kernel<<<grid, block, 0, stream2>>>(otherData_d);



Staged concurrent copy and execute

• Sequential

• Concurrent

memcpy

compute

memcpy

compute

memcpymemcpymemcpy

compute compute compute



Device Memory Spaces

● Coalesced Access to Global Memory

● Global memory loads and stores by threads of a warp 
are coalesced by the device into as few as one 
transaction when certain access requirements are met.

● the concurrent accesses of the threads of a warp will 
coalesce into a number of transactions equal to the 
number of cache lines necessary to service all of the 
threads of the warp.

● By default, all accesses are cached through L1, which as 
128-byte lines.



Global memory accesses

● 2.x  cached through L1, which has 128-byte lines.

● 3.x  is only cached in L2.
–L1 is reserved for local memory accesses.



A Simple Access Pattern

• A Simple Access Pattern
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Memory Hierarchy

● Shared Memory
–Minimize Bank conflicts

● Texture Memory

● Constant Memory

● Registers



Occupancy

● Occupancy: number of warps running concurrently on a multiprocessor 
divided by maximum number of warps that can run concurrently

● Limited by resource usage:
– Registers

– Shared memory

● Higher occupancy does not necessarily lead to higher performance
– Low occupancy kernels cannot hide memory latency



Case Study

Finding pulsars



Pulsars
Neutron stars

• Mass ∼1.4 M

• Radius: 10 – 80 km

• Density: 1014 grams/cm3

• Rapidly rotating
Up to 716 Hz

• Highly Magnetized

108 - 1015 Gauss



Pulsars
Neutron stars

• Mass ∼1.4 M

• Radius: 10 – 80 km

• Density: 1014 grams/cm3

• Rapidly rotating
Up to 716 Hz

• Highly Magnetized

108 - 1015 Gauss

The rotating magnetic field induces an electric field which 
accelerates charged particles that are then beamed from 
the poles of the star.  If one of these beams pass over us 
we can detect them as a broadband periodic signal.



So how do we find new pulsars?

• Take a long observe with radio telescope

• High sampling rate ∼12 kHz

• Remove what RIF we can

• Perform barycentric corrections

• De-disperce the observation – for a number of trial DM’s

And then to find a periodic signal….

The good old Fourier Transform!



Frequency Search – Power Spectra

Lets examine a 7.3 hour observation of Terzan 5 taken on 
the 05/05/05 with the GBT.

Power spectra of a 7.3 h observation of Ter 5
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Frequency Search – Power Spectra

Power of J1748-2446A, a very strong binary pulsar.
Ter A completes ∼4 orbits during the observation. The 
orbital motion Doppler shifts observed spin frequency and 
smears the power across a number of Fourier bins.
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Frequency Search – Power Spectra

Lets examine a 7.3 hour observation of Terzan 5 taken on 
the 05/05/05 with the GBT.

Power spectra of a 7.3 h observation of Ter 5

J1748-2446ae
Fundamental harmonic



Frequency Search – Power Spectra

If we look for J1748-2446ae at ~273.33 Hz

Ter AE is fairly weak and we can see there is no significant 
detection in the power spectra.



Finding a new binary pulsars?

Acceleration search

• Assumes the orbital period is significantly longer that the 
observation. The acceleration can be assumed to be 
close to constant during this observation.

• This constant acceleration can be compensated for and 
most of the power regained.

• This is essentially a 2D parameter search. ( 𝑓 and  𝑓)



Acceleration search - 𝑓 and  𝑓



Searching for J1748-2446ae 

• Ter AE has short orbital period ( 4 hours )

• Thus completes ∼1.8 orbits during the 7.38 hour 
observation.

• It is this not detected with a acceleration search.

So what is next?



Create a f-dot plain

● Prepare kernels (make 2d array)

● Read fft
–Prepare (1D data)

● Create f-dot plain
–Multiply kernels with data

–FFT

–Powers

● Search (optional)



Preparer the kennels

• This is only don once!

● Calculate kernel columns – only dependent on width and 
height (Fresnel integrals)

● Place data ( half and split )

● Fourier transform (y columns)



Prepare the input Data

● Read raw powers ~8K ( float2 )

● Calculate powers

● Calculate median

● Normalize raw powers (Using median of powers)

● Spread

● FFT



Create f-fdot

● Multiply Input (vector) by kernel column by column

● FFT data

● Chop ends

● Calculate powers

● Copy to f-fdot plain



Search f-fdot plain

● Find values above a threshold

● Compare to neibours (block 16 x16)

● If local maxima add to list



Add plains

● Scale x and y, sum “up” to highest harmonic.



8 Harmonics

● Create fundamental
–Search fundamental

–For stages ( Powers of 2, ½, ¼, 1/8, ...)

● For sub harmonics

–Create

–Sum with fundamental

● Search



n Harmonics v1

● Make n input data sets 1 kernel

● Create n f-fdot plains n kernels

● For stages
add all subs s kernels

search 1 kernel



n Harmonics v2

● Make n input data sets
1 kernel

● Create f-fdot
● Multiply n kernels

–FFT's           ? kernels

● Sum and search 1 kernel
–For stages

● Create powers

● Sum to shard memory

● Search section of f-fdot plain


