
GPGPU Practical

Practical session 1 – Getting your feet wet with some toy problems

This practical session will cover a wide range of topics starting with some basics and
progressing to some toy programs:

1. Introduction
2. c/c++ Hello World. (you probably should know this one!)
3. Introduction to cluster computing (this may be new to many of you)
4. Hello World on the cluster
5. CUDA Runtime API
6. Vector addition

1 Introduction
We will be running the practicals in the CS senior computer laboratory, you should be able to
login using you’re Linux account (if not or you need help speak to Chris). The computers we
will be using should have a CUDA enabled GPU. We have also have access to the ICTS
High Performance Computing Cluster, but more on that later. We will be developing and
testing locally and then testing on the cluster. We expect you to have at least a basic
understanding of c/c++, Linux (console), ssh.

I will be giving you plenty console commands, they will be in the format below:
$ command

Where $ represents the prompt and is not part of the command to be run.

Generally for the practicals I will give you the vast majority of the code already written and
you will just have to complete a few sections of code.

The starting code and documents for this Practical, can be downloaded at
people.cs.uct.ac.za/~claidler/GPGPU_ Ses 01.tar.gz and extracted.
$ wget http://people.cs.uct.ac.za/~claidler/GPGPU_Ses01.tar.gz
$ tar xfz GPGPU_Day01.tar.gz

This will create the directory GPGPU, here you will find this document and a number of
subdirectories, containing all the parts of the first practical session.

http://people.cs.uct.ac.za/~claidler/GPGPU_Day01.tar.gz
http://people.cs.uct.ac.za/~claidler/GPGPU_Day01.tar.gz
http://people.cs.uct.ac.za/~claidler/GPGPU_Day01.tar.gz

2 c/c++ Hello World.
If you are doing this workshop you should know this but I have included it to help anyone who
may be a bit behind or rusty. If this is new to you get ready for a steep learning curve over the
next couple days! You can happily skip this section if you are happy in c/c++, just compile the
hello world programs in the 01_Hello_World subdirectory as you are going to need them in
later sections.

2.1 Code

For this hello world section we will be working in the 01_Hello_World subdirectory.
$ cd 01_Hello_World

The source code of the program consists of source and header files. Source files contain
the code and header files contain function declarations and class definitions.
First we will make a c hello world program. There is only one source file main.c, have a look
at it with your favourite editor, personally I like kate I think it is on most of the machines.
$ kate main.c &

Or
$ gedit main.c &
Or you can always be old school...
$ vim main.c
The code is fairly simple and I'm not going to explain it.

2.2 Compile and link

To make an executable the code needs to be compiled and linked. The various source files
are compiled to object files, these will then be combined by a linker to create a binary. These
days most compilers can do linking for you. In our c hello world program there is only one
score file and we can compile and link with:
$ gcc main.c o HelloWorld

This produces the binary HelloWorld which can be run with
$./HelloWorld

and should give the output:
Hello World

Now lets look at something a bit more complicated, two source files. I have included an OO
(Object-oriented) c++ hello world program. This has the class HelloWorld defined in
helloWorld.h and with code in helloWorld.cpp and the main program is in main.cpp,
these can be compiled:
$ g++ c helloWorld.cpp o helloWorld.o
$ g++ c main.cpp o main_cpp.o

The -c flag specifies that no linking will be done. This will create the object files
helloWorld.o and main_cpp.o these can be linked:
$ g++ main_cpp.o helloWorld.o o OO_HelloWorld

resulting in the binary OO_HelloWorld that can be run:

http://kate-editor.org/

$./OO_HelloWorld

This should give the output:
Hello World! from a Class.

2.3 Makefiles

Now that you know how to compile, link and run a program, you wont have to do it manually,
it can get a bit tedious! Makefiles are a way to manage the build process, we have included
them for the rest of the practicals. With our makefiles you can simply compile and link
everything with the make command:
$ make

If you need more details, there is plenty material out there on the web, you are just going to
have to Google it!

http://justfuckinggoogleit.com/

3 Introduction to cluster computing
The computers you are currently working should have a GPU but for some real world
compute problems this type of GPU may not be sufficient. So we are going to testing some of
our code on a GPU clusters. The cluster we will be using is the University of Cape Town
ICTS High Performance Computing Cluster (http:// h ex.uct.ac.za/). Have a look on the web
and see what info you can find on the computers you will be working on.
Some of you may have worked on clusters but I believe most wont have, so I will go over
some general details of how to compile and run your code on a cluster.
The examples for the rest of the practicals will assume you are working on the ICTS cluster.

3.1 ICTS Cluster

3.1.1 General structure of a cluster

Generally a cluster will consist of a head node and a number of other nodes that will do the
actual computation. When you access the cluster generally you will log into the head node
and from here you will launch jobs that will be scheduled to run on the various compute
nodes. Generally the head node is configured to be similar to the compute nodes, thus you
can compile you’re code on the head node and run it on the various compute nodes. Usually
there is some form of common file system so you can seamlessly get and retrieve data from
the various nodes.

3.1.2 Logging in

You should have been supplied with a temporary user name and password for the UCT ICTS
cluster, this you will use for the rest of these practicals. If you have further research that
needs to be conducted on the cluster later you can apply for an account here.
To log into the head node of the ICTS cluster:
$ ssh X username@hex.uct.ac.za

You should have just logged onto the head node of the cluster.

3.1.3 Gather Information

Lets have a look what this head node is ...
First what OS are we running?
$ uname a

We have Linux so what distro are we using?
$ cat /etc/*release

Great now some specs of the hardware:
$ lscpu

$ lspci or on hex /sbin/lspci
$ cat /proc/cpuinfo
$ cat /proc/meminfo

From all this you should be able to gather some info on the computer you have logged onto,
one of the main things you should notice is that it is a virtual machine and has no GPU. So we
definitely can not run our CUDA code on it! Compare its specs to the specs of the machine
you are sitting in front of. Do you have a CUDA enabled GPU?

http://srvslnhpc001.uct.ac.za/eresearch/?page_id=178
http://hex.uct.ac.za/
http://hex.uct.ac.za/
http://hex.uct.ac.za/

3.1.4 Copying data to the cluster

Before we get into writing and compiling code on the server, here is a hint to make life a bit
easier. Do as much work on your local machine as possible, if possible code, debug and
tweak locally. Only run on the server when you have to.
If you do not know about scp you can learn about it here, I will not go into to much detail
except:
$ scp file.xyz username@hex.uct.ac.za:/home/username/

This is the standard method of getting files around, personally I prefer sshfs, which I will
outline below.

sshfs mount
When I am working on a remote server like this I'm not the biggest fan of having to write
everything in vim and copy files using scp. So what I do is mount the remote directory using
sshfs. This allows me to use my local file browser and favourite local editor while working on
remote files.
To make a sshfs mount open a console on your local machine and do the following:
$ cd ~
$ mkdir p ~/remote/Hex
$ sshfs username@Hex.uct.ac.za:/home/username/ ~/remote/Hex/

This mirrors all changes in the local directory ~/remote/Hex/ to you’re home drive on Hex. If
you want to stop the mirroring use:
$ fusermount u ~/remote/Hex/

But I would leave it mounted for the moment, so if you just blindly unmounted ~/remote/Hex/
please remount it.

3.1.5 Running a program on a cluster

You should have logged onto the head node of the cluster, now how do you actually run
something on the cluster? Naturally time on clusters like this is in high demand, so user 'jobs'
are put in a queue and scheduled, this allows efficient use of the compute resources. On the
ICTS cluster the resource manager used is Torque (PBS) which monitors the status of the
cluster and controls/monitors the various queues and job lists. This is tied into a batch
scheduler. ICTS uses (Maui) as its scheduler which decides how a job should be run and its
placement in a queue.
It is important to note the /home partition on the head node is NFS mounted (i.e. common) to
all worker nodes, regardless of series.
The command you will use to submit a job to the cluster is qsub. Qsub communicates with
the batch server and informs it you have a job to be run on the cluster. Once submitted the
scheduler decides where in the queue to place the job and notifies the batch server. Qsub's
return status will be whether the job was successfully submitted or not. You may use STDIN
for input to qsub, but more commonly we use an command file.
The most common commands you will be using are:
qsub <script_name> Submit a job
qstat r Monitor a job
qdel <PBS_JOBID> Cancelling a Job

http://www.adaptivecomputing.com/products/open-source/maui/
http://docs.adaptivecomputing.com/torque/2-5-12/help.htm#topics/0-about/welcome.htm
http://fuse.sourceforge.net/sshfs.html
http://en.wikipedia.org/wiki/Secure_copy
http://en.wikipedia.org/wiki/Secure_copy

3.1.6 Submit a job

The most common way to use qsub is to uses a script file. The script file is a specialized shell
script, containing a number of torque parameters that define the environment your job will
run in and the commands you want to run. First have a look at qsubScript_01 in
subdirectory 02_Cluster it should look something like the script below.

1 #!/bin/sh
2 #
3 # This is an example script
4
5 # These commands set up the Grid Environment for your job:
6 #PBS -N gpu_test_01
7 #PBS -l nodes=1:ppn=1:seriesGPU,walltime=00:00:20
8 #PBS -q GPUQ
9
10 # Now we execute some normal shell commands
11
12 # Print the date and time
13 date
14
15 # Host name of the node we are executing on
16 hostname
17
18 # where is the script running?
19 pwd

This is a shell script and if you run it on Hex (the head node):
$./qsubScript_01

It should give you something like:
Mon Apr 29 14:20:00 SAST 2013
srvslshpc001
/home/username/02_Cluster

This is running on the head node, Hex (which has host name srvslshpc001). The comments
on line 6, 7 and 8 are special PBS directives. These will be ignored when run as a normal
shell script, as the are comments, but will be passed to PBS as command line switches when
run with qsub.
Line 6 specifies the name of the job (gpu_test_01).
Line 7 the resource list consisting of; list if nodes (nodes=srvslsgpu001) or number of nodes
(nodes=2) to use number, next is the number processors (ppn=1) cluster (seriesGPU) and
maximum time to use them (walltime)
Line 8 is the queue to use(GPUQ).
For more detailed TORQUE/qsub reference have a look here or try this.
Now to run this script on the cluster, use qsub (on Hex):
$ qsub qsubScript_01

This should give us output something like
880300.srvslshpc001

Where 880300 is the job ID. Running qsub with this script, adds this script as a job in the
GPU queue and it will run the script on one of the GPU nodes (srvslsgpu001). When the

https://www.google.co.za/webhp?q=qsub#newwindow=1&q=qsub
http://docs.adaptivecomputing.com/torque/2-5-12/help.htm#topics/commands/qsub.htm
http://docs.adaptivecomputing.com/torque/2-5-12/help.htm#topics/commands/qsub.htm

script is run anything written to stderr is written to gpu_test_01.e880300 and to stdout is
written to gpu_test_01.o880300, where the number will be the relevant job ID's. Remember
that your home drive is NFS mounted so once written on the compute node, you will be able
to read the output on Hex. These files will be written to the location qsub was called from,
so in the previous case directory you are in. It may take some time for your script to get run,
especially seeing as there are probably 25 other people submitting to the queue right now, so
wait a couple seconds then have a look in the directory and the output files will hopefully be
there. If not you can use qstat to try figure out what is up. Hopefully gpu_test_01.e880300 is
empty and gpu_test_01.o880300 should look something like:

1 Tue Apr 21 14:21:00 SAST 2015
2 srvslsgpu001
3 /home/username

Great we ran some shell commands on the server, and got some output. It is important to
note it isn't interactive, you write up a script add it to the queue and it gets run at some
point in the future and you get the output. Now lets have a closer look at the output we got,
note the directory the script was run in was your home directory. If you want to change to
the directory where the script was called from on the head node you can put cd
$PBS_O_WORKDIR in the script see qsubScript_02, have a look at the output generated when
you run it.
$ qsub qsubScript_02

Have a look at the output, especially the last line what about if we do:
$ mkdir p subdir
$ cd subdir
$ qsub ../qsubScript_02

Note where the output files are placed and where the script was run, this makes a big
difference when you are trying to run your programs in various places on your home drive. It
is often advisable to use absolute paths.

3.1.7 Monitor a job

The command to use here is qstat, it will list the jobs you have active. For a full reference
have a look here or good old man qstat.

3.1.8 Cancelling a Job

The command to use here is qdel <PBS_JOBID>, the job will be sent TERM and KILL signals
killing the running processes. For a full reference have a look here or good old man qdel.

3.1.9 Get info on the server

We can use what we have learned to get some info on the GPU cluster. Have a look at
qsubScript_03 it has a the commands we used in 3.1.3 and we can now use it to get some
info on the GPU nodes.
$ qsub qsubScript_03

http://docs.adaptivecomputing.com/torque/2-5-12/help.htm#topics/commands/qdel.htm
http://docs.adaptivecomputing.com/torque/2-5-12/help.htm#topics/commands/qstat.htm

3.2

There is plenty more to know and I'm not going to cover it here, for reference's have a look
here:
http://Hex.uct.ac.za/JobSubmit.html
http://docs.adaptivecomputing.com/torque/2-5-12/help.htm
If you need more details, there is plenty other material out there on the web, you are just
going to have to Google it!

http://docs.adaptivecomputing.com/torque/2-5-12/help.htm
http://hex.uct.ac.za/JobSubmit.html

4 Hello World on the cluster
For this section you are going to have to compile and run a hello world program on the
cluster. We will be working in the 03_Hello_World_Cluster subdirectory, which you will
see is basically empty. In the previous sections you were given every detail, here we just give
you some task to do, you can refer to the previous sections or Google if you need help.

• Change to the 03_Hello_World_Cluster/src subdirectory.
• Write a basic c or c++ hello world program.
• Makes sure it compiles and runs on your local machine.
• Copy your code across to the cluster
• Login to Hex
• Compile your program on Hex (you will have to 'make clean' first if you copied across object

or binary files!)
• Copy the binary to 03_Hello_World_Cluster on Hex
• Edit qsubScript so that it will run your binary
• Use qsub to run your hello world application on the GPU cluster

5 CUDA Runtime API
In this section we will do a little example using the CUDA Runtime API. For work like this your
biggest aid will be the official documentation, which can be found here
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html
We will be working in the 04_Device_Query_API directory, where we will be writing a
program to find out some of the CUDA specs and the specs of the CUDA device(s). I have
written up a skeleton and you will just have to look up the relevant API calls, and add them to
the code.
You will first get everything working on you’re local machine and then when everything is
good you will run it on the cluster.

5.1 Build

On you’re local machine you can simply build the project with:
$ make

This should give output something like:
g++ m64 O3 I/usr/local/cuda/include I. I..
I/home/claidler/Day_01/04_Device_Query_API/../../common o release/main.o c
main.cpp
nvcc link release/main.o o release/deviceQuery lgomp L/usr/local/cuda/lib64
lcudart

Notice we are compiling the main.cpp with g++ and linking with libcudart using nvcc. For this
program we could link with g++, but later we will need to link with nvcc, we will discuss this in
the next section. libcudart is included as part of the CUDA toolkit.

5.2 Run

I normally include a run clause in my make files, this compiles and if successful runs the
binary, If you try and run the program:
$ make run

You should get something like:
./release/deviceQuery
 == GPGPU workshop CUDA Device Query (Runtime API) ==

ERROR: The variable 'deviceCount' has not been instantiated. Pleas correct line
78 in 'main.cpp' by using an API call to get a relevant value.
make: *** [run] Error 1

5.3 Fix error

Have a look at the error and it will give you some insight! So we go to line 78 in main.cpp and
we see something like
76 //TODO 1 - Find an API call to calculate the number of devices . Set: deviceCount
77 {
78 deviceCount = -1*__LINE__;
79 }

All the edits you have to make are indicated with a TODO comment, you should only have to

https://developer.nvidia.com/cuda-toolkit
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html

edit code in between the curly braces following the TODO comment. In this case we have the
line deviceCount = -1*__LINE__; the idea is to find out how many GPU's there are. You
will see I have set deviceCount. The value it is set to is -1*__LINE__ this is just a junk value
I use to indicate that deviceCount hasn't been correctly instantiated yet. __LINE__ is a
standard predefined compiler macro, and I am using a negative value to indicate an invalid
value that will cause the error to be printed.

What you need to do is set deviceCount to the correct value. For this we use the API. This is
easily done simply open up the on-lin e reference and in the first section we find:
cudaError_t cudaGetDeviceCount (int* count)

Returns the number of compute-capable devices.

Great follow the link and you will get a description of cudaGetDeviceCount. So use the API
call and do some error checks and you can get something like:
 //TODO 1 - Find an API call to calculate the number of devices . Set:
deviceCount
 {
 // API Call
 cudaError_t cudaStat = cudaGetDeviceCount(&deviceCount);

 // Error Checks
 if (cudaStat != cudaSuccess)
 {
 fprintf(stderr, "Error %s at line %d in file %s\n",
 cudaGetErrorString(cudaStat), __LINE__, __FILE__);
 exit(EXIT_FAILURE);
 }
 }

Note there is a macro CUDA_CHECK_RETURN in common/GPGPU.h to do the error checks and so
this can become:
 //TODO 1 - Find an API call to calculate the number of devices . Set:
deviceCount
 {
 CUDA_SAFE_CALL(cudaGetDeviceCount(&deviceCount),"Failed to get device
count using cudaGetDeviceCount");
 }

If you now try run it on you’re local machine you should get something like

 == GPGPU workshop CUDA Device Query (Runtime API) ==

There are 1 CUDA enabled devices on this node
ERROR: The variable 'driverVersion' has not been instantiated. Pleas correct
line 83 in 'main.cpp' by using an API call to get a relevant value.

Great you solved the first sub task / TODO. Before you continue with the rest lets try run this
on the cluster to see how we do that.

http://docs.nvidia.com/cuda/cuda-runtime-api/#group__CUDART__DEVICE_1gd3f924ba23b94793b0c93b2addba0741
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__TYPES_1gf599e5b8b829ce7db0f5216928f6ecb6
http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html
http://gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-Macros.html#Standard-Predefined-Macros

5.4 Run on cluster

Lets try run our incomplete code on the cluster, note that most of the programs from
here will require files found in the common directory. I would advise mounting Hex and
copying the entire GPGPU directory to your home directory on Hex. If you build the code on
you’re local machine the binaries will have been compiled and linked with local libraries so
always make sure you clean the project when you are switching computers.
$ make clean

You should be able to compile on the head node with:
$ make

Once it has compiled successfully you will find the compiled binary (deviceQuery) in the
current directory.
Now if you try run this on Hex
$./deviceQuery

You will get the error:
ERROR: Failed to get device count using cudaGetDeviceCount [CUDA driver version
is insufficient for CUDA runtime version at line 72 in file
main.cpp]

What’s wrong here? You are trying to run a compute program, specifically GPU compute
program, on the head node. You do not want to do this, it is a sure fire way to get an
aggravated e-mail from an admin telling you to stop abusing the head node. Again do not
run you’re programs on the head node! Luckily in our case we are trying to use the GPU
so it will probably error anyway. You want to submit a job to the cluster to run the
program, so add the relevant lines to the qsubScript and submit it to the queue. You should
get similar output / error message as you got on you’re local machine.

5.5 API Calls

Now the rest is up to you, find all the TODO comments and fix them, most of this will be done
with API calls. When all is done the code should compile and run with no errors. TODO 7 and
8, may cause some trouble, speak to a tutor if you need help.

5.6 RUN on cluster

Once you have the code finished try run it on the cluster to to see what resources there are on
the cluster. Note there are two nodes in the seriesGPU cluster, try figure out a way to specify
winch node you’re code gets run on.

6 Vector addition

In this section we will get into the first real CUDA code with the simple case of vector
addition. This will introduce you to CUDA grids , blocks, threads and kernels.

Consider we have two list of numbers and we want to sum corresponding elements to create
a new list, the classic case of vector addition. The addition of a single pair of corresponding
elements is independent of all others and can thus be performed in parallel, this is perfectly
suited to the SIMD model.

For this section we will be working in the 05_Vector_Add directory. Here you will find a
couple of source files and a make file, you will be editing vectorAdd.cu. Again all the
sections you will have to edit are marked by a TODO comment. Again this code relies on some
code form the common directory, notably I use a TODO macro to note the location of of the
next section to be completed, once dealt with you can remove or comment out the relevant
call to the macro. For most of the initial sections you should only have to add code to the
braces below the comments. I will briefly describe the task here and you will find other details
in the comments.
Again when you are writing CUDA code you should find the CUDA C Programming Guide
and toolkit documentation a great asset.

Illustration 1: Vector addition

http://docs.nvidia.com/cuda/cuda-runtime-api/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

6.1 Specify which CUDA device to use

To minimise contention you must specify which GPU you will be using, to do this pleas flip a
coin, one side device 0 the other device 1.

6.2 Allocate device memory

You will have to allocate memory on the device, it might be a good idea to do some error and
sanity checks as well.

6.3 Copy input data from the host to the device

You will have to copy the data that is in host memory to the device memory.

6.4 Set the dimensions of the blocks and grid

Our data is one dimensional so set up a 1D block and grid structure, you are going to have to
decide on your block dimension, try 1D 256 element block. Note that 256 is divisible by 32,
why is this important?

6.5 Call the kernel

Well fairly self explanatory.

6.6 In the kernel, calculate the index of the thread

6.7 In the kernel, do the addition

6.8 Copy device memory to host

6.9 Free device memory

Great, at this point you should be able to run and the verification should pass. If verification
passes, the program will output some information, something like:
Computation speedup 21.00 real speedup 0.29 Host malloc: 2ms Device malloc:
142ms

CPU Gflops 0.5 GPU Gflops 10.0

'Computation speed-up', considers only computation time, GPU verse CPU, where as 'real
speed-up' includes the time to copy data to and from the device.

6.10Bigger problems

By default the program runs with arrays of 10 000 000 elements, this can be changed with
the -n flag. Try some bigger problem sizes say, 12 000 000, 15 000 000 how does this affect
your speedups? Now if you try bigger problems you may run into various problems. For each
of the sizes below, run yore program, if it fails note why, think of a way to fix it and implement
it. Hopefully you implemented some error checking in yore previous sections it may come in
very helpful here. You may need to refer to some of the results of the device query you wrote
in the previous section to solve your problems.

• 17 000 000 What problems could this cause?
• 70 000 000 What problems could this cause?
• 470 000 000 What problems could this cause?

Once you work through the above, you should be able to run problem sizes of up to +-690M
elements, what is the limiting factor if you go over this? Think about how you would go about
over coming this, but you don't have to implement it.

6.11Analyse

You may have noticed the logger->csvWrite commands in the code, you can write some
output of your run to a comma separated file for easy analysis, this is enabled with the -l flag.
We can now see how the problem scales, on the size of one GPU, as the problem size
increases. For this we need to run tests at number of problem sizes. This can easily be
achieved by making the block at TODO 6.11 loop over a variety of problem sizes that cover
the full range possible by your program. Do this with the -e flag and use the cvs log, create a
graph to show your results. What dominates the time taken to run the GPU version, how
would you try get a round this type of problem?
Now, how about comparing apples with apples, so far you have been doing the CPU
calculation using only 1 processor. How many processors do the various nodes have? If you
uncomment the line that starts “//#pragma omp parallel” the CPU add will run in parallel
across the CPU cores. (Note you will have to change your PBS script to request more
CPU's). How does this change your results, what real speed up are you getting now? How
about Gflops, what real Gflops are you achieving compare this to the theoretical maximum
we calculated earlier?
The take home message from this is that you can get code to run in parallel but it is not
always easy to get the performance you expect!

	1 Introduction
	2 c/c++ Hello World.
	2.1 Code
	2.2 Compile and link
	2.3 Makefiles

	3 Introduction to cluster computing
	3.1 ICTS Cluster
	3.1.1 General structure of a cluster
	3.1.2 Logging in
	3.1.3 Gather Information
	3.1.4 Copying data to the cluster
	3.1.5 Running a program on a cluster
	3.1.6 Submit a job
	3.1.7 Monitor a job
	3.1.8 Cancelling a Job
	3.1.9 Get info on the server

	4 Hello World on the cluster
	5 CUDA Runtime API
	5.1 Build
	5.2 Run
	5.3 Fix error
	5.4 Run on cluster
	5.5 API Calls
	5.6 RUN on cluster

	6 Vector addition
	6.1 Specify which CUDA device to use
	6.2 Allocate device memory
	6.3 Copy input data from the host to the device
	6.4 Set the dimensions of the blocks and grid
	6.5 Call the kernel
	6.6 In the kernel, calculate the index of the thread
	6.7 In the kernel, do the addition
	6.8 Copy device memory to host
	6.9 Free device memory
	6.10 Bigger problems
	6.11 Analyse

