
A look ahead: Echelon

Talk contents [13 slides]

2

1. The Echelon system [4].
2. The challenge of power consumption in Echelon [9].

I. Introduction

3

Companies involved in the project

4

System sketch

5

Thread count estimation

6

2010: 4640 GPUs
(32*145 Fermi GPUs)

2018: 90K GPUs
(based on a Echelon system)

Threads/SM

Threads/GPU

Threads/Cabinet

Threads/Machine

 1 536 ~ 1 000

(16x) 24 576 ~ 100 000

(32x) 786 432 ~ 10 000 000

(145x) ~ 100 000 000 ~ 10 000 000 000

How to get to billions of threads

Programming System:
Programmer expresses all of the concurrency.
Programming system decides how much to deploy in space and

how much to iterate in time.

Architecture:
Fast, low overhead thread array creation and management.
Fast, low overhead communication and synchronization.
Message-driven computing (active messages).

7

II. The challenge of
power consumption

in Echelon

8

Power consumption in typical computers

9

As of 2012 chips in silicon, we have:

10

Square chip: 20 x 20 mm.

64-bit DP: 20 pJ.

26 pJ 256 pJ 1 nJ

500 pJ
Efficient off-chip link:

16 nJ (16.000 pJ)
256-bit access on a 8 KB.

SRAM cache: 50 pJ.

The high cost of data movement: Fetching
operands costs more than computing on them

DRAM read/write:

Manufacturing process: 28 nm.

256-bit buses

Addressing the power challenge

Locality and its role on power consumption:
Bulk of data must be accessed from register file (2 pJ.), not across

the chip (integrated cache, 150 pJ.), off-chip (external cache, 300 pJ.),
or across the system (DRAM memory, 1000 pJ.).

Application, programming system and architecture must work
together to exploit locality.

Overhead:
Bulk of execution energy must go to carrying out the operation, not

scheduling instructions (where 100x is consumed today).

Optimizations:
At all levels of the memory hierarchy to operate efficiently.

11

Power consumption within a GPU

Communications take the bulk of power consumption.
And instruction scheduling in an out-of-order CPU is even

worse, spending 2000 pJ. for each instruction (either integer
o floating-point).

12

Manufacturing process (and year):

User platform:

40 nm. (’10) 10 nm. (estim. 2017)10 nm. (estim. 2017)

Desktop Desktop Laptop

Vdd (nominal)

Target frequency

Energy for a madd in double-precision

Energy for a add with integer data

64-bit read from 8 KB. SRAM

Wire energy (per transition)

Wire energy (256 bits, distance of 10 mm.)

0.9 V. 0.75 V. 0.65 V.

1.6 GHz. 2.5 GHz. 2 GHz.

50 pJ. 8.7 pJ. 6.5 pJ.

0.5 pJ. 0.07 pJ. 0.05 pJ.

14 pJ. 2.4 pJ. 1.8 pJ.

240 fJ/bit/mm 150 fJ/bit/mm 115 fJ/bit/mm

310 pJ. 200 pJ. 150 pJ.

Scaling makes locality even more important:
Power consumption within VRAM

13

Manufacturing process (and year): 45 nm. (2010) 16 nm. (estimated for 2017)

DRAM interface pin bandwidth

DRAM interface energy

DRAM access energy

4 Gbps. 50 Gbps.

20-30 pJ/bit 2 pJ/bit

8-15 pJ/bit 2.5 pJ/bit

Projections for power consumption
in CPUs and GPUs (in picoJules)

14

CPU in
2010

CPU in
2015

GPU in 2015 Echelon's goal by
maximizing locality

Instruction
scheduling

Access to
on-chip cache

Access to
off-chip cache

Arithmetic operation
(average cost)

Local access
to register file

TOTAL

2000 560 3 3

75 37,5 37,5 10,5

100 15 15 9

25 3 3 3

14 2,1 2,1 2,7

2214 617,6 60,6 28,2

Basic power guidelines at different levels

The bulk of the power is consumed by data movement
rather than operations. Therefore, algorithms should be
designed to perform more work per unit data movement:

Performing more operations as long as they save transfers.
Recomputing values instead of fetching them.

Programming systems should further optimize this data
movement:

Using techniques such as blocking and tiling.
Being aware of the energy cost for each instruction.

Architectures should provide:
A memory hierarchy exposed to the programmer.
Efficient mechanisms for communication.

15

A basic idea to optimize power consumption
in GPUs: Temporal SIMT

Existing SIMT (Single Instruction Multiple Thread)
amortizes instruction fetch across multiple threads, but:

 Perform poorly (and energy inefficiently) when threads diverge.
 Execute redundant instructions that are common across threads.

Solution: Temporal SIMT.
Execute threads in thread block

in sequence on a single lane,
which amortizes fetch.

Shared registers for common
values, which amortizes execution.

Power consumption on Nvidia's roadmap

17

16

2

4

6

8

10

12

14

G
FL

O
PS

 in
 d

ou
bl

e
pr

ec
is

io
n

fo
r

ea
ch

 w
at

t
co

ns
um

ed

2008 2010 2012 2014

Tesla
Fermi

Kepler

Maxwell

