

A look ahead: Echelon

Talk contents [13 slides]

1. The Echelon system [4].

2. The challenge of power consumption in Echelon [9].

I. Introduction

Companies involved in the project

System sketch

Manuel Ujaldon - Nvidia CUDA Fellow

Thread count estimation

	2010: 4640 GPUs (32*145 Fermi GPUs)	2018: 90K GPUs (based on a Echelon system)
Threads/SM	1 536	~ 1 000
Threads/GPU	(16x) 24 576	~ 100 000
Threads/Cabinet	(32x) 786 432	~ 10 000 000
Threads/Machine	(145x) ~ 100 000 000	~ 10 000 000 000

How to get to billions of threads

Programming System:

Programmer expresses all of the concurrency.

Programming system decides how much to deploy in space and how much to iterate in time.

Architecture:

- Fast, low overhead thread array creation and management.
- Fast, low overhead communication and synchronization.
- Message-driven computing (active messages).

II. The challenge of power consumption in Echelon

Power consumption in typical computers

10

The high cost of data movement: Fetching operands costs more than computing on them

As of 2012 chips in silicon, we have:

Square chip: 20 x 20 mm.

Efficient off-chip link:

DRAM read/write:

16 nJ (16.000 pJ)

11

Addressing the power challenge

Locality and its role on power consumption:

Bulk of data must be accessed from register file (2 pJ.), not across the chip (integrated cache, 150 pJ.), off-chip (external cache, 300 pJ.), or across the system (DRAM memory, 1000 pJ.).

Application, programming system and architecture must work together to exploit locality.

• Overhead:

Bulk of execution energy must go to carrying out the operation, not scheduling instructions (where 100x is consumed today).

• Optimizations:

At all levels of the memory hierarchy to operate efficiently.

Power consumption within a GPU

Manufacturing process (and year):	40 nm. ('10)	10 nm. (estim. 2017)	
User platform:	Desktop	Desktop	Laptop
Vdd (nominal)	0.9 V.	0.75 V.	0.65 V.
Target frequency	1.6 GHz.	2.5 GHz.	2 GHz.
Energy for a madd in double-precision	50 pJ.	8.7 pJ.	6.5 pJ.
Energy for a add with integer data	0.5 pJ.	0.07 pJ.	0.05 pJ.
64-bit read from 8 KB. SRAM	14 pJ.	2.4 pJ.	1.8 pJ.
Wire energy (per transition)	240 fJ/bit/mm	150 fJ/bit/mm	115 fJ/bit/mm
Wire energy (256 bits, distance of 10 mm.)	310 pJ.	200 pJ.	150 рЈ.

Communications take the bulk of power consumption.
And instruction scheduling in an out-of-order CPU is even worse, spending 2000 pJ. for each instruction (either integer o floating-point).

Scaling makes locality even more important: Power consumption within VRAM

Manufacturing process (and year):	45 nm. (2010)	16 nm. (estimated for 2017)
DRAM interface pin bandwidth	4 Gbps.	50 Gbps.
DRAM interface energy	20-30 pJ/bit	2 pJ/bit
DRAM access energy	8-15 pJ/bit	2.5 pJ/bit

13

Projections for power consumption in CPUs and GPUs (in picoJules)

	CPU in 2010	CPU in 2015	GPU in 2015	Echelon's goal by maximizing locality
Instruction scheduling	2000	560	3	3
Access to on-chip cache	75	37,5	37,5	10,5
Access to off-chip cache	100	15	15	9
Arithmetic operation (average cost)	25	3	3	3
Local access to register file	14	2,1	2,1	2,7
TOTAL	2214	617,6	60,6	28,2

Manuel Ujaldon - Nvidia CUDA Fellow

14

15

Basic power guidelines at different levels

The bulk of the power is consumed by data movement rather than operations. Therefore, algorithms should be designed to perform more work per unit data movement:

- Performing more operations as long as they save transfers.
- Recomputing values instead of fetching them.

Programming systems should further optimize this data movement:

- Using techniques such as blocking and tiling.
- Being aware of the energy cost for each instruction.
- Architectures should provide:
 - A memory hierarchy exposed to the programmer.
 - Efficient mechanisms for communication.

A basic idea to optimize power consumption in GPUs: Temporal SIMT

Existing SIMT (Single Instruction Multiple Thread) amortizes instruction fetch across multiple threads, but:

- Perform poorly (and energy inefficiently) when threads diverge.
- Execute redundant instructions that are common across threads.

• Solution: Temporal SIMT.

Execute threads in thread block in sequence on a single lane, which amortizes fetch.

Shared registers for common values, which amortizes execution.

Power consumption on Nvidia's roadmap

