
CUDA 6.0

Manuel Ujaldón
Associate Professor, Univ. of Malaga (Spain)
Conjoint Senior Lecturer, Univ. of Newcastle (Australia)
Nvidia CUDA Fellow

1

Acknowledgements

2

To the great Nvidia people, for sharing with me ideas,
material, figures, presentations, ... Particularly, for this
presentation:

Mark Ebersole (webinars and slides):
CUDA 6.0 overview.
Optimizations for Kepler.

Mark Harris (SC’13 talk, webinar and “parallel for all” blog):
CUDA 6.0 announcements.
New hardware features in Maxwell.

2

Talk contents [49 slides]

1. The evolution of CUDA [6 slides]
2. CUDA 6.0 support [5]
3. Compiling and linking (CUDA 5.0 only) [3]
4. Dynamic parallelism (CUDA 5 & 6) [6]
5. New tools for development, debugging and
optimization (CUDA 5 & 6) [1]
6. GPUDirect-RDMA (CUDA 5 & 6) [4]
7. Unified memory (CUDA 6.0 only) [13]
8. Resources and bibliography [11]

3

3

I. The evolution of CUDA

4

The impressive evolution of CUDA

5

100.000.000
CUDA-capable GPUs

150.000
CUDA downloads

1 supercomputer

60
university courses

4.000
academic papers

The CUDA software is downloaded once every minute.

Year 2008 Year 2014
500.000.000
CUDA-capable GPUs

2.100.000
CUDA downloads

52
supercomputers

780
courses

40.000
academic papers

5

Worldwide distribution
of CUDA university courses

6

6

Summary of GPU evolution

2001: First many-cores (vertex and pixel processors).
2003: Those processor become programmable (with Cg).
2006: Vertex and pixel processors unify.
2007: CUDA emerges.
2008: Double precision floating-point arithmetic.
2010: Operands are IEEE-normalized and memory is ECC.
2012: Wider support for irregular computing.
2014: The CPU-GPU memory space is unified.
Still pending: Reliability in clusters and connection to disk.

7

7

The CUDA family picture

8

8

CUDA 5 highlights

Dynamic Parallelism:
Spawn new parallel work from within GPU code (from GK110 on).

GPU Object Linking:
Libraries and plug-ins for GPU code.

New Nsight Eclipse Edition:
Develop, Debug, and Optimize... All in one tool!

GPUDirect:
RDMA between GPUs and PCI-express devices.

CUDA 5.5 is an intermediate step:
 Smoothes the transition towards CUDA 6.0.

9

9

CUDA 6 highlights

Unified Memory:
CPU and GPU can share data without much programming effort.

Extended Library Interface (XT) and Drop-in Libraries:
Libraries much easier to use.

GPUDirect RDMA:
A key achievement in multi-GPU environments.

Developer tools:
Visual Profiler enhanced with:

Side-by-side source and disassembly view showing.
New analysis passes (per SM activity level), generates a kernel analysis report.

Multi-Process Server (MPS) support in nvprof and cuda-memcheck.
Nsight Eclipse Edition supports remote development (x86 and ARM).

10

10

II. CUDA 6.0 support
(operating systems and platforms)

11

Operating systems

Windows:
 XP, Vista, 7, 8, 8.1, Server 2008 R2, Server 2012.
 Visual Studio 2008, 2010, 2012, 2012 Express.

Linux:
 Fedora 19.
 RHEL & CentOS 5, 6.
 OpenSUSE 12.3.
 SUSE SLES 11 SP2, SP3.
 Ubuntu 12.04 LTS (including ARM cross and native), 13.04.
 ICC 13.1.

Mac:
 OSX 10.8, 10.9.

12

12

Platforms (depending on OS).
CUDA 6 Production Release

https://developer.nvidia.com/cuda-downloads

13

13

https://developer.nvidia.com/cuda
https://developer.nvidia.com/cuda

GPUs for CUDA 6.0

CUDA Compute Capabilities 3.0 (sm_30, 2012 versions of
Kepler like Tesla K10, GK104):

Do not support dynamic parallelism nor Hyper-Q.
Support unified memory with a separate pool of shared data with

auto-migration (a subset of the memory which has many limitations).

CUDA Compute Capabilities 3.5 (sm_35, 2013 and 2014
versions of Kepler like Tesla K20, K20X and K40, GK110):

Support dynamic parallelism and Hyper-Q.
Support unified memory, with similar restrictions than CCC 3.0.

CUDA Compute Capabilities 5.0 (sm_50, 2014 versions of
Maxwell like GeForce GTX750Ti, GM107-GM108):

Full support of dynamic parallelism, Hyper-Q and unified memory.
14

14

Deprecations

Things that tend to be obsolete:
Still supported.
Not recommended.
New developments may not work with it.
Likely to be dropped in the future.

Some examples:
32-bit applications on x86 Linux (toolkit & driver).
32-bit applications on Mac (toolkit & driver).
G80 platform / sm_10 (toolkit).

15

15

Dropped support

cuSPARSE “Legacy” API.
Ubuntu 10.04 LTS (toolkit & driver).
SUSE Linux Enterprise Server 11 SP1 (toolkit & driver).
Mac OSX 10.7 (toolkit & driver).

Mac Models with the MCP79 Chipset (driver)
iMac: 20-inch (early ’09), 24-inch (early ’09), 21.5-inch (late ’09).
MacBook Pro: 15-inch (late’08), 17-inch (early’09), 17-inch (mid’09),

15-inch (mid ’09), 15-inch 2.53 GHz (mid’09), 13-inch (mid’09).
Mac mini: Early ’09, Late ’09.
MacBook Air (Late ’08, Mid ’09).

16

16

III. Compiling and linking

17

CUDA 4.0: Whole-program
compilation and linking

CUDA 4 required a single source file for a single kernel. It
was not possible to link enternal device code.

18

Include files together to build

18

CUDA 5.0: Separate Compilation & Linking

Now it is possible to compile and link each file separately:
That way, we can build multiple object files independently, which

can later be linked to build the executable file.

19

19

CUDA 5.0: Separate Compilation & Linking

We can also combine object files into static libraries, which
can be shared from different source files when linking:

To facilitate code reuse.
To reduce the compilation time.

20

•This also enables closed-
source device libraries to call
user-defined device callback
functions.

20

IV. Dynamic parallelism in CUDA 5 & 6

21

Dynamic parallelism allows CUDA 5.0
to improve three primary issues:

22

Performance

Programmability

Execution

Data-dependent
execution

Recursive parallel
algorithms

Dynamic load
balancing

Thread scheduling
to help fill the GPU

Library calls from
GPU kernels

Simplify
CPU/GPU division

22

Familiar syntax and programming model

23

int main() {
 float *data;
 setup(data);

 A <<< ... >>> (data);
 B <<< ... >>> (data);
 C <<< ... >>> (data);
 cudaDeviceSynchronize();
 return 0;
}

__global__ void B(float *data) {
 do_stuff(data);

 X <<< ... >>> (data);
 Y <<< ... >>> (data);
 Z <<< ... >>> (data);
 cudaDeviceSynchronize();

 do_more_stuff(data);
}

main

CPU

A

B

C

GPU

X

Y

Z

23

Applications using dynamic parallelism can launch too many
grids and exhaust the pre-allocated pending launch buffer
(PLB).

Result in launch failures, sometimes intermittent due to scheduling.
PLB size tuning can fix the problem, but often involves trial-and-error.

Before CUDA 6.0:
Tight limit on Pending Launch Buffer (PLB)

24

Finite Pending
Launch Buffer Out-of-memory failure with

too many concurrent launches.

24

EPLB guarantees all launches succeed by using a lower
performance virtualized launch buffer, when fast PLB is full.

No more launch failures regardless of scheduling.
PLB size tuning provides direct performance improvement path.
Enabled by default.

CUDA 6.0 uses an extended PLB (EPLB)

25

…

Finite Pending
Launch Buffer

Virtualized Extended
Pending Launch Buffer (PLB)

25

CUDA 6.0: Performance
improvements in key use cases

Kernel launch.
Repeated launch of the same set of kernels.
cudaDeviceSynchronize().
Back-to-back grids in a stream.

26

26

Performance improvements
on dynamic parallelism

27

0

10,0

20,0

30,0

40,0

CUDA 5 CUDA 5.5 CUDA 6

17,0
22,0

35,0

9,110,6
14,0

Back to Back Launches (usecs)
Launch and Synchronize (usecs)

27

V. New tools for development, debugging
and optimization

28

New features in Nvidia Nsight, Eclipse Edition,
also available for Linux and Mac OS

CUDA-aware editor:
Automated CPU to

GPU code refactoring.
Semantic highlight-

ing of CUDA code.
Integrated code

samples & docs.
29

Nsight debugger
Simultaneously

debugging of CPU and
GPU code.

Inspect variables
across CUDA threads.

Use breakpoints &
single step debugging.

Nsight profiler
Quickly identifies

bottlenecks in source
lines and using a
unified CPU-GPU trace.

Integrated expert
system.

Fast edit-build-profile
optimization cycle.

29

VI. GPU Direct

30

Communication among GPU memories

GPU Direct 1.0 was released in Fermi to allow
communications among GPUs within CPU clusters.

31Receiver Sender
31

Kepler + CUDA 5 support GPUDirect-RDMA
[Remote Direct Memory Access]

 This allows a more direct transfer between GPUs.
 Usually, the link is PCI-express or InfiniBand.

32

32

GPUDirect-RDMA in Maxwell

The situation is more complex in CUDA 6.0 with unified
memory.

33

33

Preliminary results using GPUDirect-RDMA
(better perf. ahead w. CUDA 6.0 & OpenMPI)

Inter-node latency using:
Tesla K40m GPUs (no GeForces).
MPI MVAPICH2 library.
ConnectX-3, IVB 3GHz.

34

Better MPI Applic. Scaling:
Code: HSG (bioinformatics).
2 GPU nodes.
4 MPI processes each node.

G
PU

-G
PU

 la
te

nc
y

(m
ic

ro
se

co
nd

s)

Message size (bytes) Side number

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

34

VII. Unified memory

35

The idea

36

GPUCPU

DDR3 GDDR5

Main memory Video memory

Dual-, tri- or
quad-channel
(~100 GB/s.)

256, 320,
384 bits
(~300 GB/s.)

PCI-express
(~10 GB/s.)

Kepler+
 GPUCPU

DDR3 GDDR5Unified
memory

36

Unified memory contributions

Simpler programming and memory model:
Single pointer to data, accessible anywhere.
Eliminate need for cudaMemcpy().
Greatly simplifies code porting.

Performance through data locality:
Migrate data to accessing processor.
Guarantee global coherency.
Still allows cudaMemcpyAsync() hand tuning.

37

37

System requirements

38

Required Limitations

GPU

Operating System

Windows

Linux

Linux on ARM

Mac OSX

Kepler (GK10x+) or
Maxwell (GM10x+)

Limited performance in
CCC 3.0 and CCC 3.5

64 bits

7 or 8 WDDM & TCC no XP/Vista

Kernel 2.6.18+ All CUDA-supported distros, not ARM

ARM64

Not supported in CUDA 6.0Not supported in CUDA 6.0

38

CUDA memory types

39

Zero-Copy
(pinned memory)

Unified Virtual
Addressing Unified Memory

CUDA call

Allocation fixed in

Local access for

PIC-e access for

Other features

Coherency

Full support in

cudaMallocHost(&A, 4); cudaMalloc(&A, 4); cudaMallocManaged(&A, 4);

Main memory (DDR3) Video memory (GDDR5) Both

CPU Home GPU CPU and home GPU

All GPUs Other GPUs Other GPUs

Avoid swapping to disk No CPU access On access CPU/GPU migration

At all times Between GPUs Only at launch & sync.

CUDA 2.2 CUDA 1.0 CUDA 6.0

39

Additions to the CUDA API

New call: cudaMallocManaged()
Drop-in replacement for cudaMalloc() allocates managed memory.
Returns pointer accessible from both Host and Device.

New call: cudaStreamAttachMemAsync()
Manages concurrently in multi-threaded CPU applications.

New keyword: __managed__
Global variable annotation combines with __device__.
Declares global-scope migratable device variable.
Symbol accessible from both GPU and CPU code.

40

40

A preliminar example:
Sorting the elements from a file

41

CPU code in C GPU code in CUDA 6.0

void sortfile (FILE *fp, int N) {

 char *data;
 data = (char *) malloc)N);

 fread(data, 1, N, fp);

 qsort(data, N, 1, compare);

 use_data(data);

 free(data);
}

void sortfile (FILE *fp, int N) {

 char *data;
 cudaMallocManaged(&data, N);

 fread(data, 1, N, fp);

 qsort<<<...>>> (data, N, 1, compare);
 cudaDeviceSynchronize();

 use_data(data);

 cudaFree(data);
}

41

Before unified memory

A “deep copy” is required:
We must copy the structure

and everything that it points to.
This is why C++ invented the
copy constructor.

CPU and GPU cannot share a
copy of the data (coherency).
This prevents memcpy style
comparisons, checksumming
and other things.

42

dataElem

prop1

prop2

*text “Hello, world”

CPU memory

dataElem

prop1

prop2

*text “Hello, world”

GPU memory

struct dataElem {
 int prop1;

 int prop2;
 char *text;
}

Two addresses
and two copies
of the data

42

The code required without unified memory

43

dataElem

prop1

prop2

*text “Hello, world”

CPU memory

dataElem

prop1

prop2

*text “Hello, world”

GPU memory

void launch(dataElem *elem) {
 dataElem *g_elem;
 char *g_text;

 int textlen = strlen(elem->text);

 // Allocate storage for struct and text
 cudaMalloc(&g_elem, sizeof(dataElem));

 cudaMalloc(&g_text, textlen);

 // Copy up each piece separately, including
new “text” pointer value
 cudaMemcpy(g_elem, elem, sizeof(dataElem));

 cudaMemcpy(g_text, elem->text, textlen);
 cudaMemcpy(&(g_elem->text), &g_text,

 sizeof(g_text));

 // Finally we can launch our kernel, but

 // CPU and GPU use different copies of “elem”
 kernel<<< ... >>>(g_elem);

}

Two addresses
and two copies
of the data

43

The code required WITH unified memory

What remains the same:
Data movement.
GPU accesses a local copy of text.

What has changed:
Programmer sees a single pointer.
CPU and GPU both reference the

same object.
There is coherence.

To pass-by-reference vs. pass-
by-value you need to use C++.

44

void launch(dataElem *elem) {
 kernel<<< ... >>>(elem);
}

dataElem

prop1

prop2

*text “Hello, world”

GPU memory

Unified memory

CPU memory

44

An example: Linked lists

Almost impossible to manage in the original CUDA API.
The best you can do is use pinned memory:

Pointers are global: Just as unified memory pointers.
Performance is low: GPU suffers from PCI-e bandwidth.
GPU latency is very high, which is particularly important for linked

lists because of the intrinsic pointer chasing. 45

key

value

next

key

value

next

key

value

next

key

value

next

key

value

next

key

value

next

All accesses via PCI-express bus

CPU memory

GPU memory

45

Linked lists with unified memory

Can pass list elements between CPU & GPU.
No need to move data back and forth between CPU and GPU.

Can insert and delete elements from CPU or GPU.
But program must still ensure no race conditions (data is coherent

between CPU & GPU at kernel launch only). 46

key

value

next

key

value

next

key

value

next

CPU memory

GPU memory

46

Unified memory: Summary

Drop-in replacement for cudaMalloc().
cudaMemcpy() now optional.

Greatly simplifies code porting.
Less Host-side memory management.

Enables shared data structures between CPU & GPU
Single pointer to data = no change to data structures.

Powerful for high-level languages like C++.

47

47

Unified memory:
Future developments

48

48

VIII. Resources and bibliography

49

CUDA Zone:
Basic web resource for a CUDA programmer

[developer.nvidia.com/cuda-zone]
50

- Languages (C/C++, Python).
- Libraries (cuBLAS, cuFFT).
- Directives (OpenACC).
- Templates (thrust).

- Compiler (NVCC).
- Debugger (GDB).
- Profiler (cudaprof and Visual).
- Development envir. (Nsight).
- Code examples.

- Eclipse.
- Matlab.
- CUDA Fortran.
- GPUDirect.
- SDK for the LLVM compiler.

50

http://www.nvidia.com/cuda
http://www.nvidia.com/cuda

CUDA 6 Production Release.
Free download for all platforms and users

[developer.nvidia.com/cuda-downloads]

51

51

https://developer.nvidia.com/cuda
https://developer.nvidia.com/cuda

CUDA books: From 2007 to 2013

 GPU Gems series [developer.vidia.com/content/GPUGems3/gpugems3_part01.html]
 List of CUDA books in [www.nvidia.com/object/cuda_books.html]

52

Sep'07 Feb'10 Jul'10 Abr'11 Oct'11

Nov'11 Dic'12 Jun'13 Oct'13

52

http://developer.vidia.com/content/gpu-gems-3%5D
http://developer.vidia.com/content/gpu-gems-3%5D
http://www.nvidia.com/object/cuda_books.html%5D
http://www.nvidia.com/object/cuda_books.html%5D

Guides for developers and more documents

Getting started with CUDA C: Programmers guide.
[docs.nvidia.com/cuda/cuda-c-programming-guide]

For tough programmers: The best practices guide.
[docs.nvidia.com/cuda/cuda-c-best-practices-guide]

The root web collecting all CUDA-related documents:
[docs.nvidia.com/cuda]

where we can find, additional guides for:
Installing CUDA on Linux, MacOS and Windows.
Optimize and improve CUDA programs on Kepler platforms.
Check the CUDA API syntax (runtime, driver and math).
Learn to use libraries like cuBLAS, cuFFT, cuRAND, cuSPARSE, ...
Deal with basic tools (compiler, debugger, profiler).

53

53

http://docs.nvidia.com/cuda/cuda-c-programming-guide%5D
http://docs.nvidia.com/cuda/cuda-c-programming-guide%5D
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide
http://docs.nvidia.com/cuda
http://docs.nvidia.com/cuda

Choices to accelerate your applications on
GPUs and material for teaching CUDA

[developer.nvidia.com/cuda-education-training] (also
available from the left lower corner of the CUDA Zone)

54

54

Courses on-line (free access)

More than 50.000 registered users from 127 countries over the
last 6 months. An opportunity to learn from CUDA masters:

Prof. Wen-Mei Hwu (Univ. of Illinois).
Prof. John Owens (Univ. of California at Davis).
Dr. David Luebke (Nvidia Research).

There are two basic options:
Introduction to parallel programming: [www.udacity.com]
Heterogeneous parallel programming: [www.coursera.org]

If you do not have a CUDA-enabled GPU, you can even request
90 minutes tokens on Amazon EC2 instances (cloud computing):

[nvidia.qwiklab.com]
Only a supported web browser is required.

55

55

http://www.udacity.com
http://www.udacity.com
http://www.coursera.org
http://www.coursera.org

Tutorials and webinars

Presentations recorded at GTC (Graphics Technology
Conference):

383 talks from 2013.
More than 500 available from 2014.

[www.gputechconf.com/gtcnew/on-demand-gtc.php]
Webinars about GPU computing:

List of past talks on video (mp4/wmv) and slides (PDF).
List of incoming on-line talks to be enrolled.

[developer.nvidia.com/gpu-computing-webinars]
CUDACasts:

[bit.ly/cudacasts]
56

56

http://developer.nvidia.com/gpu-computing-webinars%5D
http://developer.nvidia.com/gpu-computing-webinars%5D
http://developer.nvidia.com/gpu-computing-webinars%5D
http://developer.nvidia.com/gpu-computing-webinars%5D
http://developer.nvidia.com/gpu-computing-webinars%5D
http://developer.nvidia.com/gpu-computing-webinars%5D
http://developer.nvidia.com/gpu-computing-webinars%5D
http://developer.nvidia.com/gpu-computing-webinars%5D

Examples of webinars about CUDA 6.0

57

57

Developers

 Sign up as a registered developer:
 [www.nvidia.com/paralleldeveloper]
 Access to exclusive developer downloads.
 Exclusive access to pre-release CUDA installers like CUDA 6.0.
 Exclusive activities an special offers.

 Meeting point with many other developers:
 [www.gpucomputing.net]

 GPU news and events:
 [www.gpgpu.org]

Technical questions on-line:
NVIDIA Developer Forums: [devtalk.nvidia.com]
Search or ask on: [stackoverflow.com/tags/cuda] 58

58

http://developer.nvidia.com/user/register%5D
http://developer.nvidia.com/user/register%5D
http://www.gpucomputing.net
http://www.gpucomputing.net
http://www.gpgpu.org
http://www.gpgpu.org
http://stackoverflow.com/tags/cuda%5D
http://stackoverflow.com/tags/cuda%5D

Developers (2)

 List of CUDA-enabled GPUs:
 [developer.nvidia.com/cuda-gpus]

 And a a last tool for tuning code: The CUDA Occupancy
Calculator

[developer.download.nvidia.com/compute/cuda/
CUDA_Occupancy_calculator.xls]

59

59

http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls%5D
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls%5D
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls%5D
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls%5D

Future developments

Nvidia’s blog contains articles unveiling future technology
to be used within CUDA. It is the most reliable source about
what’s next (subscription recommended):

[devblogs.nvidia.com/parallelforall]

Some recommended articles:
“5 Powerful New Features in CUDA 6”, by Mark Harris.
“Jetson TK1: Mobile Embedded Supercomputer Takes CUDA

Everywhere”, by Mark Harris.
“NVLINK, Pascal and Stacked Memory: Feeding the Appetite for Big

Data”, by Denis Foley.
“CUDA Pro Tip: Increase Application Performance with NVIDIA GPU

Boost”, by Mark Harris.
“CUDA 6.0 Unified Memory”, by Mark Ebersole. 60

60

Thanks!

You can always reach me in Spain
at the Computer Architecture Department
of the University of Malaga:

e-mail: ujaldon@uma.es
Phone: +34 952 13 28 24.
Web page: http://manuel.ujaldon.es

(english/spanish versions available).

Or, more specifically on GPUs,
visit my web page as Nvidia CUDA Fellow:

http://research.nvidia.com/users/manuel-ujaldon

61

61

mailto:ujaldon@uma.es
mailto:ujaldon@uma.es
http://manuel.ujaldon.es
http://manuel.ujaldon.es
http://research.nvidia.com/users/manuel-ujaldon
http://research.nvidia.com/users/manuel-ujaldon

