
GPGPU 2015: High Performance
Computing with CUDA

Department of Computer Science. University of Cape Town
April 20th-24th, 2015

Manuel Ujaldón
Associate Professor @ Univ. of Malaga (Spain)
Conjoint Senior Lecturer @ Univ. of Newcastle (Australia)
CUDA Fellow @ Nvidia

Tutorial contents for today [118 slides]

1. Introduction. [17 slides]
2. Architecture. [21]

1. CUDA hardware model. [3]
2. The first generation: Tesla (2007-2009). [3]
3. The second generation: Fermi (2010-2011). [3]
4. The third generation: Kepler (2012-2014). [6]
5. The fourth generation: Maxwell (2015-?). [5]
6. Summary by generation. [1]

3. Programming. [15]
4. Syntax. [16]

1. Basic elements. [10]
2. A couple of preliminary examples. [6]

5. Compilation and tools [12]
6. Examples: VectorAdd, Stencil, MxM. [25]
7. Bibliography, resources and tools. [12]

2

Prerequisites for this tutorial

You (probably) need experience with C.
You do not need parallel programming background

(but it helps if you have it).
You do not need knowledge about the GPU architecture:

We will start with the basic pillars.
You do not need graphics experience. Those were the old

times (shaders, Cg). With CUDA, it is not required any
knowledge about vertices, pixels, textures, ...

3

I. Introduction

Welcome to the GPU world

5

The characters of this story:
The CUDA family picture

6

The impressive evolution of CUDA

7

Year 2008

100.000.000
CUDA-capable GPUs
(6.000 Teslas only)

600.000.000 CUDA-capable GPUs
(and 450.000 Tesla high-end GPUs)

Year 2015

60
university courses

840 university courses

1
supercomputer

in top500.org
(77 TFLOPS)

75 supercomputers
in TOP500.org
(aggregate 54.000 TFLOPS)

150.000
CUDA downloads

3.000.000 CUDA downloads per year
(that is, one every 9 seconds)

4.000
academic papers

60.000
academic papers

Worldwide distribution
of CUDA university courses

8

Summary of GPU evolution

2001: First many-cores (vertex and pixel processors).
2003: Those processor become programmable (with Cg).
2006: Vertex and pixel processors unify.
2007: CUDA emerges.
2008: Double precision floating-point arithmetic.
2010: Operands are IEEE-normalized and memory is ECC.
2012: Wider support for irregular computing.
2014: The CPU-GPU memory space is unified.
Still pending: Reliability in clusters and connection to disk.

9

The 3 features which have made
the GPU such a unique processor

Simplified.
The control required for one thread is amortized by 31 more (warp).

Scalability.
Makes use of the huge data volume handled by applications to

define a sustainable parallelization model.

Productivity.
Endowed with efficient mechanisms for switching immediately to

another thread whenever the one being executed suffers from stalls.

CUDA essential keywords:
Warp, SIMD, latency hiding, free context switch.

10

What is CUDA?
“Compute Unified Device Architecture”

A platform designed jointly at software and hardware levels to
make use of the GPU computational power in general-purpose
applications at three levels:

Software: It allows to program the GPU with minimal but
powerful SIMD extensions to enable heterogeneous
programming and attain an efficient and scalable execution.

Firmware: It offers a driver oriented to GPGPU
programming, which is compatible with that used for
rendering. Straightforward APIs to manage devices, memory,
etc.

Hardware: It exposes GPU parallelism for general-purpose
computing via a number of multiprocessors endowed with
cores and a memory hierarchy.

11

CUDA C at a glance

Essentially, it is C language with minimal extensions:
Programmer writes the program for a single thread, and the code is

automatically instanciated over hundreds of threads.

CUDA defines:
An architectural model:

With many processing cores grouped in multiprocessors who share a SIMD control unit.

A programming model:
Based on massive data parallelism and fine-grained parallelism.
Scalable: The code is executed on a different number of cores without recompiling it.

A memory management model:
More explicit to the programmer, where caches are not transparent anymore.

Goals:
Build a code which scales to hundreds of cores in a simple way, allowing

us to declare thousands of threads.
Allow heterogeneous computing (between CPUs and GPUs).

12

Terminology:
Host: The CPU and the memory on motherboard [DDR3 as of 2013].
Device: The graphics card [GPU + video memory]:

GPU: Nvidia GeForce/Tesla.
Video memory: GDDR5 as of 2015.

Heterogeneous Computing (1/4)

Host Device
13

CUDA executes a program on a device (the GPU), which is seen as a co-
processor for the host (the CPU).

CUDA can be seen as a library of functions which contains 3 types of
components:

Host: Control and access to devices.
Device: Specific functions for the devices.
All: Vector data types and a set of routines supported on both sides.

Heterogeneous Computing (2/4)

14

CPU (host)
 GPU
(device)

System Memory
(DDR3)

Video memory
(GDDR5)

Cores Caches
50 GB/s.

3-channel (192 bits = 24 bytes)
@ 1.333 GHz 32 GB/s.

PCI-e 3.0: 8 GB/s.

384 bits @ 3 GHz 144 GB/s.

Heterogeneous Computing (3/4)

The code to be written in CUDA can be lower than 5%,
but exceed 50% of the execution time if remains on CPU. 15

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }

 // Synchronize (ensure all the data is available)
 __syncthreads();

 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

 // Store the result
 out[gindex] = result;
}

void fill_ints(int *x, int n) {
 fill_n(x, n, 1);
}

int main(void) {
 int *in, *out; // host copies of a, b, c
 int *d_in, *d_out; // device copies of a, b, c
 int size = (N + 2*RADIUS) * sizeof(int);

 // Alloc space for host copies and setup values
 in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

 // Alloc space for device copies
 cudaMalloc((void **)&d_in, size);
 cudaMalloc((void **)&d_out, size);

 // Copy to device
 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

 // Launch stencil_1d() kernel on GPU
 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);

 // Copy result back to host
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(in); free(out);
 cudaFree(d_in); cudaFree(d_out);
 return 0;
}

Heterogeneous Computing (4/4)

HOST CODE:
- Serial code.
- Parallel code.
- Serial code.

DEVICE CODE:
Parallel function
written in CUDA.

16

Simple Processing Flow (1/3)

1.Copy input data from CPU
memory to GPU memory.

PCI Bus

17

Simple Processing Flow (2/3)

1.Copy input data from CPU
memory to GPU memory.

2.Load GPU program and
execute, caching data on
chip for performance.

PCI Bus

18

Simple Processing Flow (3/3)

1.Copy input data from CPU
memory to GPU memory.

2.Load GPU program and
execute, caching data on
chip for performance.

3.Transfer results from GPU
memory to CPU memory.

PCI Bus

19

The classic example

Standard C that runs on the host.
NVIDIA compiler (nvcc) can be used to compile programs

with no device code.

20

Salida:
$ nvcc hello.cu
$ a.out
Hello World!
$

int main(void) {

 printf("Hello World!\n");

 return 0;

}

Hello World! with device code (1/2)

Two new syntactic elements:
The CUDA C keyword __global__

indicates a function that runs on the
device and is called from host code.

mykernel<<<1,1>>> is a CUDA
kernel launch from the host code.

That's all that is required to
execute a function on the GPU!

21

__global__ void mykernel(void)

{

}

int main(void)

{

 mykernel<<<1,1>>>();

 printf("Hello World!\n");

 return 0;

}

nvcc separates source code into host and device.
Device functions (like mikernel()) are procesed by

NVIDIA compiler.
Host functions (like main()) are processed by host

compiler (gcc for Unix, cl.exe for Windows).

Hello World! with device code (2/2)

mykernel() does nothing this time.
Triple angle brackets mark a call from host code to device code.

Also called a “kernel launch”.
Parameters <<<1,1>>> describe CUDA parallelism (blocks and threads).

22

__global__ void mykernel(void)

{

}

int main(void) {

 mykernel<<<1,1>>>();

 printf("Hello World!\n");

 return 0;

}

Output:

$ nvcc hello.cu
$ a.out
Hello World!
$

II. Architecture

``... and if software people wants good machines,

they must learn more about hardware to influence

that way hardware designers ...´´

David A. Patterson & John Hennessy
Organization and Computer Design

Mc-Graw-Hill (1995)
Chapter 9, page 569

24

II.1. CUDA hardware model

Overview of CUDA hardware generations

26

16

2

4

6

8

10

12

14

G
FL

O
PS

 in
 d

ou
bl

e
pr

ec
is

io
n

fo
r

ea
ch

 w
at

t
co

ns
um

ed

2008

Tesla
Fermi

Kepler

24

18

20

22

2010 2012 2014 2016

Maxwell

Pascal

CUDA
FP64

Dynamic Parallelism

Unified memory
DX12

3D Memory
NVLink

The CUDA hardware model: SIMD processors
structured, a tale of hardware scalability

A GPU consists of:
N multiprocessors (or SMs), each

containing M cores (or stream procs).

Massive parallelism:
Applied to thousands of threads.
Sharing data at different levels.

Heterogeneous computing:
GPU:

Data intensive.
Fine-grain parallelism.

CPU:
Control/management.
Coarse-grain parallelism. 27

GPU
Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Control
Unit

(SIMD)

Core 1 …Core 2 Core M

G80
(Tesla)

GT200
(Tesla)

GF100
(Fermi)

GK110
(Kepler)

Time period

N (multiprocs.)

M (cores/multip.)

Number of cores

2006-07 2008-09 2010-11 2012-13

16 30 14-16 13-15

8 8 32 192

128 240 448-512 2496-2880

Memory hierarchy

Each multiprocessor has:
A register file.
Shared memory.
A constant cache and a texture

cache, both read-only.

Global memory is the actual
video memory (GDDR5):

Three times faster than the
DDR3 used by the CPU, but...

 ... around 500 times slower
than shared memory! (DRAM
versus SRAM).

2813

GPU

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Global memory

Shared memory

Control
Unit

(SIMD)Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant
cache

Texture
cache

II.2. The first generation:
Tesla (G80 and GT200)

The first generation: G80 (GeForce 8800)

30

GPU G80 (around 600 MHz, much lower than the frequency for the cores)
Multiprocessor 16

Multiprocessor 2
Multiprocessor 1

Global memory (up to 1.5 GB) (GDDR3 @ 2x 800 MHz)

Shared memory (16 KB)

Control
Unit

(issues
SIMD

instructions)
Core 1
(1.35 GHz)

Registers

…
Core 2

Registers

Core 8

Registers

Texture cache (CUDA kernels are
mapped to GPU cores)

(CUDA thread-blocks are mapped onto multiprocessors)

The first generation: GT200 (GTX 200)

31

GPU GTX 200 (around 600 MHz)
Multiprocessor 30

Multiprocessor 2
Multiprocessor 1

Global memory (up to 4 GB) (GDDR3, 512 bits @ 2x 1.1GHz = 141.7 GB/s)

Shared memory (16 KB)

Control
Unit

(issues
SIMD

instructions)
Core 1
(1.30 GHz)

Registers

…
Core 2

Registers

Core 8

Registers

Texture cache (CUDA kernels are
mapped to GPU cores)

(CUDA thread-blocks are mapped onto multiprocessors)

Scalability for future generations:
Alternatives for increasing performance

Raise the number of
multiprocessors (basic node),
that is, we grow over the Z
dimension. This is the path
followed by 1st gener. (16 to 30).

Raise the number of processors
within a multiprocessor, which
means growing over the X
dimension. That is what the 2nd
and 3rd geners. have done (from
8 to 32 and from there to 192).

Increment the size of shared
memory (extending the Y dim.).

32

GPU
Multiprocessor 30

Multiprocessor 2
Multiprocessor 1

Global memory

Shared memory

Core 1

Registers

…Core 2

Registers

Core 8

Registers

Texture cache

(scalability within the 1st gener.)

(scalability in 2nd and 3rd geners.)

II. 3. The second generation:
Fermi (GF1xx)

34

Fermi hardware compared to its predecessors

GPU architecture
Commercial sample
Year released

G80 GT200 GF100 (Fermi)
GeForce 8800 GTX 200 GTX 580

2006 2008 2010
Number of transistors
Integer and fp32 cores
fp64 (double precision)
Double precision
floating-point speed
Warp scheduler(s)
Shared memory size
L1 cache size
L2 cache size
DRAM error correction
Address bus (width)

681 millions 1400 millions 3000 millions
128 240 512
0 30 256

None 30 madds/cycle 256 madds/cycle

1 1 2
16 KB 16 KB 16 KB + 48 KB

(or vice versa)None None
16 KB + 48 KB
(or vice versa)

None None 768 KB
No No Yes (elective)

32 bits 32 bits 64 bits

Fermi: An architectural overview

Up to 512 cores (16 SMs, each endowed with 32 cores).
Dual scheduler at the front-end of each SM.
64 KB. on each SM for shared memory and L1 cache.

compartida + caché L1.

35

The memory hierarchy

Fermi is the first GPU with a
L1 cache, combined with shared
memory for a total of 64 KB for
each SM (32 cores). 64 KB are
split into 3:1 or 1:3 proportions
(programmer’s choice).

There is also a L2 cache of
768 KB. with data conherence
shared by all multiprocessors
(SMs).

36

II. 4. The third generation:
Kepler (GK1xx)

Kepler GK110 Block Diagram

7.1 billion transistors.
15 SMX multiprocs.
> 1 TFLOP FP64.
1.5 MB L2 Cache.
384-bit GDDR5.
PCI Express Gen3.

38

Multiprocessor evolution:
From SMs in Fermi to SMXs in Kepler

39

The SMX multiprocessor

40

Front-endInstruction scheduling
and issuing in warps

Instructions execution.
512 functional units:
- 192 for ALUs.
- 192 for FPUs S.P.
- 64 for FPUs D.P.
- 32 for load/store.
- 32 for SFUs (log,sqrt, ...)

Memory access

Back-end

Interface

Express as much parallelism as possible:
SMXs (Kepler) are wider than SMs (Fermi)

Example: Kernel with blocks of 384 threads (12 warps).

41

Tetris (tile = warp_instr.):
- Issues 4 warp_instrs.
- Executes up to 10 warps =
320 threads.
- Warp_instrs. are symmetric
and executed all in one cycle.

 Issues 4
warp_instrs.

Executes up to 10 warp_instrs.

The player is the GPU scheduler!
You can rotate moving pieces if
there are no data dependencies.

instr.

...

...

...

...

...

Block 0: Block 1:

warp
for instructions using “int”.

“double”.

“load/store”.

“log/sqrt...”.

for instrs. using “float”.

Color code:

100 functional units

SM in

Fermi:
- Issues 2.
- Executes
up to 5.

Fermi:

G80: Takes
4 cycles for
executing
each
warp_instrs.

G80:
16 U.F.

sub
fmadd
fdiv64
load
sqrt

Kepler:
- Issues 4 warps x 2 instructions.
- Executes up to 16 warp_instrs.
(up to 512 functional units in parallel)

SMX (Kepler): 512 functional units

6x32 = 192 ALUs 192 SP FPU

64 DP FPU

32 LD/ST

32 SFU

Thread Level Parallelism (TLP) and
Instruction Level Parallelism (ILP)

42

...

...

...

...

...

Increase
parallelism
vertically
via ILP:
Using more
independent
instructions.

Increase parallelism horizontally via TLP:
More concurrent warps (larger blocks and/or more active blocks per SMX).

SMXs can leverage available ILP interchangeably with TLP:
It is much better at this than Fermi.

Sometimes is easier to increase ILP than TLP (for
example, a small loop unrolling):

 # of threads may be limited by algorithm or hardware limits.

We need ILP for attaining a high IPC (Instrs. Per Cycle).

3: Data par. (SIMD)

Kepler GPUs can hold together all
forms of parallelism. Example: K40.

43

Imagine a 3D tetris with 15 boxes and up to 64 pieces
falling down simultaneously on each of them, because that
is the way K40 works when all parallelism is deployed.

1: Thread-level parallelism (TLP)

2:
 I

ns
tr

s.
 (

IL
P)

...

...

...

...

...

SMX 0
...
...

...

...

...

4: Vectorial (warp = 32)

SMX 15

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

The K40 can schedule up to
64x15 warps in a single cycle:
30720 threads in 1.14 ns.All this volume represents 60x15 warps!

Case study: Zernike moments

Fermi is more balanced in this case.
With the resources distribution in Kepler, the execution of

integer arithmetic improves, but the floating-point arithmetic
and the load/store worsens. All the others are not used.

44

GPU
resources ALU 32-bits FPU 64-bits FPU Load/store SFU

Fermi

Kepler

Kernel for
Zernike

Better

32% 32% 16% 16% 4%

37.5% 37.5% 12.5% 6.25% 6.25%

54% 21% 0% 25% 0%

Kepler Fermi Kepler Fermi Fermi

Use the CUDA Visual Profiler to know how
good your application adapts to resources

45

The way the GPU front-end works:
(1) How warps are scheduled

46SM (Fermi) SMX (Kepler)

The interface between front-end & back-end:
(2) How warps are issued

47
SM (Fermi) SMX (Kepler)

In the 5 cycles shown, we could have executed all this work.
 In Fermi, there is a deficit in SFUs (blue), whereas in Kepler, the

deficit goes to load/store units (green).
Kepler balances double precision (red) and has a good surplus in

“int” and “float” computations, an evidence that real codes have
more presence of orange and, overall, yellow instructions.

The way the GPU back-end works:
(3) Warps execution

48
SM (Fermi) SMX (Kepler)

Let us assume that when we start the execution there are
few warps pending to be executed:

 Two single precision warps (orange).
 Two double precision warps (red).

Looks like that it is smart for the front-end to work
ahead of the back-end (prefetching) in order to
mazimize throughput.

Some remarks about the “tetris” model

In Fermi, red tiles are not allowed to be combined with others.
In Kepler, we cannot take 8 warp_instrs. horizontally, bricks

must have a minimum height of 2.
Instructions must have different latency, so those consuming

more than one cycle (i.e. double precision floating-point)
should expand vertically.

If the warp faces divergencies, it will take more than one cycle.
We can represent that case similarly to the one above.

Codes usually have more yellow tiles (“int” predominates).
Some bricks are not complete because the scheduler cannot

find 4x2 structures free of dependencies.
Bricks can assemble non-contiguous tiles.

49

II. 5. The fourth generation:
Maxwell (GM1xx)

Maxwell and SMM multiprocessors
(for GeForce GTX 750 Ti, GM107 with 5 SMM)

1870 Mt.
148 mm2.

51

The SMMs

Keep the same 4 warp
schedulers, and the same LD/
ST and SFU units.

Reduce the number of
cores for int and float:
from 192 to 128 units.

52

Some commercial models on 28 nm.

53

GeForce GTX
650

GeForce GTX
650 Ti

GeForce GTX
750 Ti

GeForce GTX
660

GPU

Architecture

Multiprocessors

Number of cores

Frequency of cores

DRAM bus width

DRAM frequency

RAM bandwidth

GDDR5 memory size

Power connector

Maximum TDP

Million transistors

Die size

Approx. cost (2 GB)

GK107 GK106 GM107 GK106

Kepler Kepler Maxwell Kepler

2 SMX 4 SMX 5 SMM 5 SMX

192 x 2 = 384 192 x 4 = 768 128 x 5 = 640 192 x 5 = 960

1058 MHz 925 MHz 1020 - 1085 MHz 980 - 1033 MHz

128 bits 128 bits 128 bits 192 bits

2x 2500 MHz 2x 2700 MHz 2x 2700 MHz 2x 3000 MHz

80 Gbytes/s. 86.4 Gbytes/s. 86.4 Gbytes/s. 144 Gbytes/s.

1 or 2 Gbytes 1 or 2 Gbytes 1 or 2 Gbytes 2 Gbytes

6 pins 6 pins None 6 pins

64 W. 110 W. 60 W. 140 W.

1300 2540 1870 3175 mm2 ?

118 mm2 221 mm2 148 mm2 275 mm2 ?

100 € 110 € 110 € 150 €

Major enhancements

54

Power efficiency

55

II. 6. A summary of four generations

Scalability for the architecture:
A summary of four generations

57

Architecture

Time frame

CUDA Compute
Capability

TeslaTesla FermiFermi KeplerKeplerKeplerKepler MaxwellMaxwell

G80 GT200 GF100 GF104 GK104
(K10)

GK110
(K20X)

GK110
(K40)

GK110
(K80)

GM107
(GTX760)

GM204
(GTX980)

2006
/07

2008
/09 2010 2011 2012 2013 2013

/14
2014
/15

2014
/15

2014
/15

1.0 1.2 2.0 2.1 3.0 3.5 3.5 3.7 5.0 5.2

N (multiprocs.)

M (cores/multip.)

Number of cores

16 30 16 7 8 14 15 30 5 16

8 8 32 48 192 192 192 192 128 128

128 240 512 336 1536 2688 2880 5760 640 2048

III. Programming

Comparing the GPU and the CPU

59 60

POSIX-threads in CPU
CUDA in GPU, followed by

host code in CPU
2D configuration: Grid of

2x2 blocks, 4 threads each
#define NUM_THREADS 16
void *myfun (void *threadId)
{
 int tid = (int) threadId;
 float result = sin(tid) * tan(tid);

 pthread_exit(NULL);
}

void main()
{
 int t;
 for (t=0; t<NUM_THREADS; t++)
 pthread_create(NULL,NULL,myfun,t);
 pthread_exit(NULL);
}

#define NUM_BLOCKS 1
#define BLOCKSIZE 16
__global__ void mykernel()
{
 int tid = threadIdx.x;
 float result = sin(tid) * tan(tid);
}

void main()
{
 dim3 dimGrid (NUM_BLOCKS);
 dim3 dimBlock (BLOCKSIZE);
 mykernel<<<dimGrid, dimBlock>>>();
 return EXIT_SUCCESS;
}

#define NUM_BLX 2
#define NUM_BLY 2
#define BLOCKSIZE 4
__global__ void mykernel()
{
 int bid=blockIdx.x*gridDim.y+blockIdx.y;
 int tid=bid*blockDim.x+ threadIdx.x;
 float result = sin(tid) * tan(tid);
}

void main()
{
 dim3 dimGrid (NUM_BLX, NUM_BLY);
 dim3 dimBlock(BLOCKSIZE);
 mykernel<<<dimGrid, dimBlock>>>();
 return EXIT_SUCCESS;
}

From POSIX threads in CPU
to CUDA threads in GPU

The CUDA programming model

61

The GPU (device) is a highly multithreaded coprocessor
to the CPU (host):

Has its own DRAM (device memory).
Executes many threads in parallel on several multiprocessor cores.

CUDA threads are extremely lightweight.
Very little creation overhead.
Context switching is essentially free.

Programmer’s goal: Declare thousands of threads to
ensure the full utilization of hardware resources.

GPU

Multiprocessor 1 Multiprocessor 2 Multiprocessor N

The model instanciates over few features
to produce the commercial catalog

We may expect higher differences for these features
between models associated to different generations.

Differences will also grow when graphics cards aim to
different ends:

$300-500 high-end graphics card.
$150-250 mid-end.
$60-120 low-end.

Video memory may also differ when a new technology
emerges. Last step forward: GDDR5 vs. GDDR3.

Graphical features are different too, but that is out of the
scope of this tutorial.

62

Structure of a CUDA program

Each multiprocessor (SM) processes batches of blocks one
after another.

Active blocks = blocks processed by one multiprocessor in one
batch.

Active threads = all the threads from the active blocks.

Registers and shared memory within a multiprocessor are
split among the active threads. Therefore, for any given
kernel, the number of active blocks depends on:

The number of registers that the kernel requires.
How much shared memory the kernel consumes.

63

Preliminary definitions

64

 Programmers face the challenge of exposing parallelism for
thousands cores using the following elements:

 Device = GPU = Set of multiprocessors.
 Multiprocessor = Set of processors + shared memory.
 Kernel = Program ready to run on GPU.
 Grid = Array of thread blocks that execute a kernel.
 Thread block = Group of SIMD threads that:

 Execute a kernel on different data based on threadID and
blockID.

 Can communicate via shared memory.
 Warp size = 32. This is the granularity of the scheduler for

issuing threads to the execution units.

The relation between hardware and software
from a memory access perspective

65

···

· · · · · · · · ·

· · · · · · · · ·

··· ··· ···

··· ··· ···

··· ··· ···

Thread

Thread block

Grid 0

Grid 1

On-chip
memory

Memory
outside the
GPU chip
(but within the
graphics card)

Resources and limitations depending
on CUDA hardware generation (CCC)

66

CUDA Compute Capability (CCC)CUDA Compute Capability (CCC)CUDA Compute Capability (CCC)CUDA Compute Capability (CCC)CUDA Compute Capability (CCC)
Limitation Impact

1.0, 1.1 1.2, 1.3 2.0, 2.1 3.0,
3.5, 3.7 5.0, 5.2

Limitation Impact

Multiprocessors / GPU

Cores / Multiprocessor

Threads / Warp

Blocks / Multiprocessor

Threads / Block

Threads / Multiprocessor

32 bits registers / Multip.

Shared memory / Multip.

16 30 14-16 13-16 4, 5, ... Hardware Scalability

8 8 32 192 128 Hardware Scalability

32 32 32 32 32 Software Throughput

8 8 8 16 32 Software Throughput

512 512 1024 1024 1024 Software Parallelism

768 1 024 1 536 2048 2048 Software Parallelism

8K 16K 32K 64K 64K Hardware Working set

16K 16K 16K
48K

16K,
32K, 48K 64K, 96K Hardware Working set

GPU threads and blocks

Threads are assigned to multiprocessors in blocks, and to
cores via warps, which is the scheduling unit (32 threads).

Threads of a block share information via shared memory,
and can synchronize via syncthreads() calls. 67

· · · ·

Blocks are
assigned to

multiprocessors

[Kepler’s limit: 16
concurrent blocks

per multiprocessor] Block 0 Block 1 Block 2

Grid 0 [Kepler’s limit: 4G blocks per grid]

Kepler’s limits: 1024 threads per block, 2048 threads per multiprocessor

Playing with parallel constrainsts in Kepler
to maximize concurrency

 Limits within a multiprocessor: [1] 16 concurrent blocks,
[2] 1024 threads/block and [3] 2048 threads total.

 1 block of 2048 threads. Forbidden by [2].
 2 blocks of 1024 threads. Feasible on the same multiproc.
 4 blocks of 512 threads. Feasible on the same multiproc.
 4 blocks of 1024 threads. Forbidden by [3] on the same

multiprocessor, feasible involving two multiprocessors.
 8 blocks of 256 threads. Feasible on the same multiproc.
 256 blocks of 8 threads. Forbidden by [1] on the same

multiprocessor, feasible involving 16 multiprocessors.

68

GPU memory: Scope and location

Threads within a block can use the shared memory to perform
tasks in a more cooperative and faster manner.

Global memory is the only visible to threads, blocks and kernels.
69

Local memory: Off-chip

Blocks to share
the same

multiprocessor
if memory

constraints are
fulfilled

· · · ·

C
on

st
an

t
an

d
te

xt
ur

e
m

em
or

y
al

so
 a

va
ila

bl
e

Block 0 Block 1 Block 2

Grid 0

Global memory: DRAM (GDDR5)

Shared memory

RF RF RF RF RF RF RF RF

LM LM LM LM LM LM LM LM

Legend: RF = Register file. LM = Local Memory
GPU memory: On-chip Off-chip

Playing with memory constraints in Kepler
to maximize the use of resources

 Limits within a multiprocessor (SMX): 64 Kregs. and 48
KB. of shared memory. That way:

 To allow a second block to execute on the same multiprocessor,
each block must use at most 32 Kregs. and 24 KB of shared memory.

 To allow a third block to execute on the same multiprocessor,
each block must use at most 21.3 Kregs. and 16 KB. of shared mem.

 ... and so on. In general, the less memory used, the more
concurrency for blocks execution.

 There is a trade-off between memory and parallelism!

70

Think small:
1D partitioning on a 64 elements vector

71

Remember: Use finest grained parallelism (assign one
data to each thread). Threads and blocks deployment:

 8 blocks of 8 threads each. Risk on smaller blocks: Waste
parallelism if the limit of 8-16 blocks per multip. is reached.

 4 blocks of 16 threads each. Risk on larger blocks:
Squeeze the working set for each thread (remember that
shared memory and register file are shared by all threads).

Now think big:
1D partitioning on a 64 million elems. array

Maximum number of threads per block:
1K on Fermi and Kepler.

Maximum number of blocks:
64K on Fermi, 4G on Kepler.

Larger sizes for data structures can only be covered with a
huge number of blocks (keeping fine-grained parallelism).

 Choices:
 64K blocks of 1K threads each.
 128K blocks of 512 threads each (only feasible in Kepler).
 256K blocks of 256 threads each (only feasible in Kepler).
 ... and so on.

72

Memory spaces

The CPU and the GPU have separated memory spaces:
To communicate them, we use the PCI express bus.
The GPU uses specific functions to allocate memory and copy data

from CPU in a similar manner to what we are used with the C
language (malloc/free).

Pointers are only addresses:
You cannot derive from a pointer value if the address belongs to

either the CPU or the GPU space.
You have to be very careful when handling pointers, as the program

usually crashes when a CPU data attemps to be accessed from GPU
and vice versa (this situation is changing in CUDA 5.0, where the
memory accessed from both processors is unified).

73

IV. Syntax

IV. 1. Basic elements

CUDA is C with some extra keywords.
A preliminar example

76

void saxpy_serial(int n, float a, float *x, float *y)
{
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}
// Invoke the SAXPY function sequentially
saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x,
float *y)
{ // More on parallel access patterns later in example 2
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
}
// Invoke SAXPY in parallel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

C code on the CPU

Equivalent CUDA code for its parallel execution on GPUs:

List of extensions added to the C language

Type qualifiers:
global, device, shared, local, constant.

Keywords:
threadIdx, blockIdx, gridDim, blockDim.

Intrinsics:
__syncthreads();

Runtime API:
Memory, symbols, execution

management.

Kernel functions to launch code to
the GPU from the CPU.

77

__device__ float array[N];

__global__ void med_filter(float *image) {

 __shared__ float region[M];
 ...

 region[threadIdx.x] = image[i];

__syncthreads();
 ...
 image[j] = result;
}

// Allocate memory in the GPU
void *myimage;
cudaMalloc(&myimage, bytes);

// 100 thread blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

Interaction between CPU and GPU

78

CUDA extends the C language with a new type of function,
kernel, which executes code in parallel on all active threads
within GPU. Remaining code is native C executed on CPU.

The typical main() of C combines the sequential execution
on CPU and the parallel execution on GPU of CUDA kernels.

A kernel is launched in an asynchronous way, that is, control
always returns immediately to the CPU.

Each GPU kernel has an implicit barrier when it ends, that is,
it does not conclude until all its threads are over.

We can exploit the CPU-GPU biprocessor by interleaving code
with a similar workload on both.

79

__global__ kernelA(){···}
__global__ kernelB(){···}
int main()
···
kernelA <<< dimGridA, dimBlockA >>> (params.);
···
kernelB <<< dimGridB, dimBlockB >>> (params.);
···

GPU

CPU

GPU

E
x
e
cu

ti
o

n

CPU

CPU

A kernel does not start until all previous kernels are over.
A stream is a new concept used for concurrent kernels.

Interaction between CPU and GPU (cont.)

80

Modifiers for the functions executed on GPU:
__global__ void MyKernel() { } // Invoked by the CPU
__device__ float MyFunc() { } // Invoked by the GPU

Modifiers for the variables within GPU:
__shared__ float MySharedArray[32]; // In shared mem.
__constant__ float MyConstantArray[32];

Configuration for the execution to launch kernels:
dim2 gridDim(100,50); // 5000 thread blocks
dim3 blockDim(4,8,8); // 256 threads per blocks
MyKernel <<< gridDim,blockDim >>> (pars.); // Launch
Note: We can see an optional third parameter here to

indicate as a hint the amount of shared memory
allocated dynamically by the kernel during its
execution.

Modifiers for the functions and
launching executions on GPU

Intrinsics

Programmer has to choose the block size and the number
of blocks to exploit the maximum amount of parallelism for
the code during its execution.

81

dim3 gridDim; // Grid dimension: Number of blocks on each dim.

dim3 blockDim; // Block dimension: Block size on each dim.

uint3 blockIdx; // Index to the block within the mesh

uint3 threadIdx; // Index to the thread in the block

void __syncthreads(); // Explicit synchronization

Functions to query at runtime
the hardware resources we count on

Each GPU available at hardware level receives an integer
tag which identifies it, starting in 0.

To know the number of GPUs available:
cudaGetDeviceCount(int* count);

To know the resources available on GPU dev (cache,
registers, clock frequency, ...):

cudaGetDeviceProperties(struct cudaDeviceProp* prop, int dev);

To know the GPU that better meets certain requirements:
cudaChooseDevice(int* dev, const struct cudaDeviceProp* prop);

To select a particular GPU:
cudaSetDevice(int dev);

To know in which GPU we are executing the code:
cudaGetDevice(int* dev);

82

The output of cudaGetDeviceProperties

This is exactly the output you get from the “DeviceQuery”
code in the CUDA SDK.

83

Let’s manage video memory

To allocate and free GPU memory:
cudaMalloc(pointer, size)
cudaFree(pointer)

To move memory areas between CPU and GPU:
On the CPU side, we declare malloc(h_A).
Also on the GPU side, we declare cudaMalloc(d_A).
And once this is done, we can:

Transfer data from the CPU to the GPU:
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

Transfer data from the GPU to the CPU:
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

Prefix “h_” useful in practice as a tag for “host memory pointer”.

Prefix “d_” also useful as a tag for “device (video) memory”.
84

IV. 2. A couple of examples

Example 1: What your code has to do

Allocate N integers in CPU memory.
Allocate N integers in GPU memory.
Initialize GPU memory to zero.
Copy values from GPU to CPU.
Print values.

86

Example 1: Solution
[C code in red, CUDA extensions in blue]

87

int main()
{
 int N = 16;
 int num_bytes = N*sizeof(int);
 int *d_a=0, *h_a=0; // Pointers in device (GPU) and host (CPU)

 h_a = (int*) malloc(num_bytes);
 cudaMalloc((void**)&d_a, num_bytes);

 if(0==h_a || 0==d_a) printf("I couldn’t allocate memory\n");

 cudaMemset(d_a, 0, num_bytes);
 cudaMemcpy(h_a, d_a, num_bytes, cudaMemcpyDeviceToHost);

 for (int i=0; i<N; i++) printf("%d ", h_a[i]);

 free(h_a);
 cudaFree(d_a);
}

Asynchronous memory transfers

cudaMemcpy() calls are synchronous, that is:
They do not start until all previous CUDA calls have finalized.
The return to the CPU does not take place until we have performed

the actual copy in memory.

From CUDA Compute Capabilities 1.2 on, it is possible to
use the cudaMemcpyAsync() variant, which introduces
the following differences:

The return to the CPU is immediate.
We can overlap computation and communication.

88

8962

The C program.
This file is compiled with gcc

The CUDA kernel running on GPU
followed by host code running on CPU.

This file is compiled with nvcc

void increment_cpu(float *a, float b, int N)
{
 for (int idx = 0; idx<N; idx++)
 a[idx] = a[idx] + b;
}

void main()
{

 increment_cpu(a, b, N);
}

__global__ void increment_gpu(float *a, float b, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx < N)
 a[idx] = a[idx] + b;
}

void main()
{
 …..
 dim3 dimBlock (blocksize);
 dim3 dimGrid (ceil(N/(float)blocksize));
 increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);
}

Example 2: Increment a scalar value “b”
to the N elements of an array

90

Say N=16 and blockDim=4. Then we have 4 thread blocks,
and each thread computes a single element of the vector.
This is what we want: fine-grained parallelism for the GPU.

blockIdx.x = 0
blockDim.x = 4
threadIdx.x = 0,1,2,3
idx = 0,1,2,3

blockIdx.x = 1
blockDim.x = 4
threadIdx.x = 0,1,2,3
idx = 4,5,6,7

blockIdx.x = 2
blockDim.x = 4
threadIdx.x = 0,1,2,3
idx = 8,9,10,11

blockIdx.x = 3
blockDim.x = 4
threadIdx.x = 0,1,2,3
idx = 12,13,14,15

int idx = (blockIdx.x * blockDim.x) + threadIdx.x;
It will map from local index threadIdx.x to global index
Warning: blockDim.x should be >= 32 (warp size), this is just an example

Same access
pattern for all
threads

La
ng

ua
ge

ex

te
ns

io
ns

Example 2: Increment a scalar “b”
to the N elements of a vector

9164

// Reserve memory on the CPU
unsigned int numBytes = N * sizeof(float);
float* h_A = (float*) malloc(numBytes);

// Reserve memory on the GPU
float* d_A = 0; cudaMalloc((void**)&d_A, numbytes);

// Copy data from CPU to GPU
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// Execute CUDA kernel with a number of blocks and block size
increment_gpu <<< N/blockSize, blockSize >>> (d_A, b);

// Copy data back to the CPU
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// Free video memory
cudaFree(d_A);

More details for the CPU code of example 2
[red for C, green for variables, blue for CUDA]

V. Compilation

The global process

93

void function_in_CPU(…)
{
 ...
}
void other_funcs_CPU(int ...)
{
 ...
}

void saxpy_serial(float ...)
{
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

void main() {
 float x;
 saxpy_serial(..);
 ...
}

NVCC
(Open64)

CPU
compiler

CUDA
kernels

CUDA
object files

The rest of
the C code

CPU
object filesLinker

CPU-GPU
executable

Identify
CUDA

kernels and
rewrite them

to exploit
GPU

parallelism

94

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU

PTX Code

CPU code

Object
code

A CUDA code is compiled
with the NVCC compiler.

NVCC separates CPU code
and GPU code.

The compilation is a two
step process:

Virtual: Generates PTX
(Parallel Thread eXecution).

Physical: Generates the
binary for a specific GPU (or
even a CPU - more on this
later).

Source
code

Virtual

Physical

Compilation modules

95

EDG
Separates GPU and CPU code.

Open64
Generates PTX assembler.

Parallel Thread eXecution (PTX)
 Virtual machine and ISA.
 Programming model.
 Resources and execution states.

EDG

C/C++ CUDA
Application

CPU Code

Open64

PTX Code

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

float4 me = gx[gtid];
me.x += me.y * me.z;

The nvcc compiler and PTX virtual machine NVCC (NVidia CUDA Compiler)

NVCC is a compiler driver.
Invokes all compilers and tools required, like cudacc, g++, cl, ...

NVCC produces two outputs:
C code for the CPU, which must be

compiled with the rest of the applic.
using another compilation tool.

PTX object code for the GPU.

96

Compilation process in Linux:

Compilation
process in
Windows:

97

Compile the kernel code with the -cubin flag to determine
register usage.

On-line alternative: nvcc —ptxas-options=-v

Open the .cubin file with a text editor and look for the
“code” section:

architecture {sm_10}
abiversion {0}
modname {cubin}
code {
 name = myGPUcode
 lmem = 0
 smem = 68
 reg = 20
 bar = 0
 bincode {
 0xa0004205 0x04200780 0x40024c09 0x00200780
 …

Per thread:
 local memory

(used by compiler to spill
registers to device memory)

Per thread-block:
shared memory

Per thread:
registers

Determining resource usage

98

The number of threads must be a multiple of warp size.
To avoid wasting computation on incomplete warps.

The number of blocks must exceed the number of SMXs
(1), and, if possible, double that number (2):

(1) So that each multiprocessor can have at least a block to work with.
(2) So that there is at least an active block which guarantees occupancy

of that SMX when the block being executed suffers from a stall due to a
memory access, unavailability of resources, bank conflicts, global stalls of
all threads on a synchronization point (__syncthreads()), etc.

Resources used by a block (register file and shared
memory) must be at least half of the total available.

Otherwise, it is better to merge blocks.

Configuration for the execution: Heuristics

99

General rules for the code to be scalable in future generations
and for the blocks stream to be processed within a pipeline:

 (1) Think big for the number of blocks.
 (2) Think small for the size of threads.

Tradeoff: More threads per block means better memory
latency hiding, but also means fewer registers per thread.

Hint: Use at least 64 threads per block, or even better, 128 or
256 threads (often there is still enough number of registers).

Tradeoff: Increasing occupancy does not necessarily mean
higher performance, but the low occupancy for a SMX prevents
from hide latency on memory bound kernels.

Hint: Pay attention to arithmetic intensity and parallelism.

Heuristics (cont.)

Everything related to performance is application-
dependent, so you have to experiment for achieving optimal
results.

GPUs may also vary in many ways depending on a
particular model:

Number of multiprocessors (SMs) and cores per SM.
Memory bandwidth: From 100 GB/s to 500 GB/s.
Register file size per SM: 8K, 16K, 32K (Fermi), 64K (Kepler).
Shared memory size: 16 KB. per SM before Fermi, up to 48 KB. now.
Threads: Check the per-block and the global limits.

Per-block: 512 (G80 and GT200), 1024 (Fermi and Kepler).
Total: 768 (G80), 1024 (GT200), 1536 (Fermi), 2048 (Kepler).

100

Parametrization of an application

101

To help you select parameters for your application wisely
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

CUDA Occupancy Calculator To reach the maximum degree of parallelism,
use wisely the orange table of the tool (1)

The first row is the number of threads per block:
The limit is 1024 in Fermi and Kepler generations.
Power of two values are usually the best choices.
List of potential candidates: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024.
We'll use 256 as first estimate, development cycles will tune the

optimal value here, but usually:
Small values [2, 4, 8, 16] do not fully exploit the warp size and shared memory

banks.
Intermediate values [32, 64] compromise thread cooperation and scalability in

Kepler, Maxwell and future GPUs.
Large values [512, 1024] prevent from having enough number of concurrent blocks

on each multiprocessor (the limits for the threads per block and per SMX are very
close to each other). Also, the amount of registers per thread is too small.

102

To reach the maximum degree of parallelism,
use wisely the orange table of the tool (2)

The second row is the number of registers per thread.
We access the .cubin file to know this.
The limit for each SM is 8K (G80), 16K (GT200), 32K (Fermi), 64K

(Kepler), so when consuming 10 regs./thread is possible to execute:
 On G80: 768 threads/SM, that is, 3 blocks of 256 thr [3*256*10=7680] (< 8192).
 On Kepler: We reach the maximum of 2048 threads per SMX, but the use of

registers is very low (we could have used up to 29 registers per thread):
8 blocks * 256 threads/block * 10 registers/thread = 22480 regs. (< 65536 max.).

In the G80 case, using 11 registers/thread, it would have meant to
stay in 2 blocks, sacrificing 1/3 of parallelism => It is worth cutting
that register down working more on the CUDA code for the thread.

103

To reach the maximum degree of parallelism,
use wisely the orange table of the tool (3)

The third row is the shared memory spent for each block:
We will also get this from the .cubin file, though we can carry out a

manual accounting, as everything depends on where we put the
__shared__ prefix during memory declarations in our program.

Limit: 16 KB (CCC 1.x), 16/48 KB (CCC 2.x), 16/32/48 KB (3.x).
In the previous case for the G80, we won’t spend more than 5 KB

of shared memory per block, so that we can reach the maximum of 3
concurrent blocks on each multiprocessor:

 3 blocks x 5 KB./block = 15 KB (< 16 KB.)

With more than 5.34 KB. of shared memory used for each block,
we sacrifice 33% of parallelism, the same performance hit than
previously if we were unable of cutting down to 10 registers/thread.

104

VI. Examples: VectorAdd, Stencil,
ReverseArray, MxM

106

1. Identify those parts with a good potential to run in
parallel exploiting SIMD data parallelism.

2. Identify all data necessary for the computations.
3. Move data to the GPU.
4. Call to the computational kernel.
5. Establish the required CPU-GPU synchronization.
6. Transfer results from GPU back to CPU.
7. Integrate the GPU results into CPU variables.

Step for building the CUDA source code

Coordinated efforts in parallel are required

Parallelism is given by blocks and threads.
Threads within each block may require an explicit

synchronization, as only within a warp it is guaranteed its
joint evolution (SIMD). Example:

107

a[i] = b[i] + 7;
syncthreads();
x[i] = a[i-1]; // The warp 1 read here the value of a[31],
 // which should have been written by warp 0 BEFORE

Kernel borders place implicit barriers:
Kernel1 <<<nblocks,nthreads>>> (a,b,c);
Kernel2 <<<nblocks,nthreads>>> (a,b);

Blocks can coordinate using atomic operations:
Example: Increment a counter atomicInc();

VI. 1. Adding two vectors

The required code for the GPU kernel
and its invocation from the CPU side

The __global__ prefix indicates that vecAdd() will
execute on device (GPU) and will be called from host (CPU).
A, B and C are pointers to device memory, so we need to:

Allocate/free memory on GPU, using cudaMalloc()/cudaFree().
These pointers cannot be dereferenced in host code.

109

// Add two vectors of size N: C[1..N] = A[1..N] + B[1..N]
// Each thread calculates a single component of the output vector
__global__ void vecAdd(float* A, float* B, float* C) {
! int tid = threadIdx.x + (blockDim.x* blockIdx.x);
! C[tid] = A[tid] + B[tid];
}

GPU code

int main() { // Launch N/256 blocks of 256 threads each
! vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);
} CPU code

11064

unsigned int numBytes = N * sizeof(float);
// Allocates CPU memory
float* h_A = (float*) malloc(numBytes);
float* h_B = (float*) malloc(numBytes);
... initializes h_A and h_B ...
// Allocates GPU memory
float* d_A = 0; cudaMalloc((void**)&d_A, numBytes);
float* d_B = 0; cudaMalloc((void**)&d_B, numBytes);
float* d_C = 0; cudaMalloc((void**)&d_C, numBytes);
// Copy input data from CPU into GPU
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, numBytes, cudaMemcpyHostToDevice);
... CALL TO THE VecAdd KERNEL IN THE PREVIOUS SLIDE HERE...
// Copy results from GPU back to CPU
float* h_C = (float*) malloc(numBytes);
cudaMemcpy(h_C, d_C, numBytes, cudaMemcpyDeviceToHost);
// Free video memory
cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);

CPU code to handle memory
and gather results from the GPU

Running in parallel
(regardless of hardware generation)

vecAdd <<< 1, 1 >>>
() Executes 1 block composed
of 1 thread - no parallelism.
vecAdd <<< B, 1 >>>

() Executes B blocks
composed on 1 thread. Inter-
multiprocessor parallelism.
vecAdd <<< B, M >>>

() Executes B blocks
composed of M threads each.
Inter- and intra-multiprocessor
parallelism.

111

GPU
Multiprocessor N

Multiprocessor 2
Multiprocessor 1

Global memory

Shared memory

Core 1

Registers

…Core 2

Registers

Core M

Registers

Texture cache

(scalability in 2nd gener.)

(scalability in 3rd gener.)

With M threads per block, a unique index is given by:
tid = threadIdx.x+ blockDim.x* blockIdx.x;

Consider indexing an array of one element per thread
(because we are interested in fine-grained parallelism), B=4
blocks of M=8 threads each:

Which thread will compute the 22nd element of the array?
gridDim.x is 4. blockDim.x is 8. blockIdx.x = 2. threadIdx.x = 5.
tid = 5 + (8 * 2) = 21 (we start from 0, so this is the 22nd element).

Indexing arrays with blocks and threads

112

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6
threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

7

Handling arbitrary vector sizes

Typical problems are not friendly multiples of blockDim.x,
so we have to prevent accessing beyond the end of arrays:

And now, update the kernel launch to include the
"incomplete" block of threads:

113

// Add two vectors of size N: C[1..N] = A[1..N] + B[1..N]
__global__ void vecAdd(float* A, float* B, float* C, N) {

int tid = threadIdx.x + (blockDim.x * blockIdx.x);
if (tid < N)
 C[tid] = A[tid] + B[tid];

}

! vecAdd<<< (N + M-1)/256, 256>>>(d_A, d_B, d_C, N); VI. 2. Stencil kernels

Rationale

Looking at the previous example, threads add a level of
complexity without contributing with new features.

However, unlike parallel blocks, threads can:
Communicate (via shared memory).
Synchronize (for example, to preserve data dependencies).

We need a more sophisticated example to illustrate all
this...

115

1D Stencil

Consider applying a 1D stencil to a 1D array of elements.
Each output element is the sum of input elements within a radius.

If radius is 3, then each output element is the sum of 7
input elements:

Again, we apply fine-grained parallelism for each thread to
process a single output element.

Input elements are read several times:
With radius 3, each input element is read seven times.

116

radius radius

Sharing data between threads. Advantages

Threads within a block can share data via shared memory.
Shared memory is user-managed: Declare with __shared__ prefix.
Data is allocated per block.
Shared memory is extremely fast:

500 times faster than global memory (video memory - GDDR5). The difference is
technology: static (built with transistors) versus dynamic (capacitors).

Programmer can see it like an extension of the register file.

Shared memory is more versatile than registers:
Registers are private to each thread, shared memory is private to each block.

117

Sharing data between threads. Limitations

Shared memory and registers usage limit parallelism.
If we leave room for a second block, register file and shared

memory are partitioned (even though blocks do not execute
simultaneously, context switch is immediate).

Examples for Kepler were shown before (for a max. of 64K
registers and 48 Kbytes of shared memory per multiproc.):

To allocate two blocks per multiprocessor: The block cannot use
more than 32 Kregisters and 24 Kbytes of shared memory.

To allocate three blocks per multiprocessor: The block cannot use
more than 21.3 Kregisters and 16 Kbytes of shared memory.

To allocate four blocks per multiprocessor: The block cannot use
more than 16 Kregisters and 12 Kbytes of shared memory.

... and so on. Use the CUDA Occupancy Calculator to figure it out.
118

Steps to cache data in shared memory:
Read (blockDim.x + 2 * radius) input elements from global

memory to shared memory.
Compute blockDim.x output elements.
Write blockDim.x output elements to global memory.

Each block needs a halo of radius elements at each
boundary.

Using Shared Memory

119

blockDim.x output elements

halo on left halo on right

Stencil kernel

120

__global__ void stencil_1d(int *d_in, int *d_out)
{
 __shared__ int temp[BLOCKSIZE + 2 * RADIUS];
 int gindex = threadIdx.x
 + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[lindex] = d_in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex-RADIUS] = d_in[gindex-RADIUS];
 temp[lindex+blockDim.x]=d_in[gindex+blockDim.x];
 }

 // Apply the stencil
 int result = 0;
 for (int offset=-RADIUS; offset<=RADIUS; offset++)
 result += temp[lindex + offset];

 // Store the result
 d_out[gindex] = result;
}

But we have to prevent race
conditions. For example, last
thread reads the halo before
first thread (from a different
warp) has fetched it.
Synchronization among
threads is required!

Threads synchronization

Use __syncthreads() to synchronize all threads within
a block:

All threads must reach the barrier before progressing.
This can be used to prevent RAW / WAR / WAW hazards.
In conditional code, the condition must be uniform across the block.

121

__global__ void stencil_1d(...)
{
 < Declare variables and indices >
 < Read input elements into shared memory >

 __syncthreads();

 < Apply the stencil >
 < Store the result >
}

Summary of major concepts
applied during this example

Launch N blocks with M threads per block to execute threads
in parallel. Use:

kernel <<< N, M >>> ();

Access block index within grid and thread index within block:
blockIdx.x and threadIdx.x;

Calculate global indices where each thread has to work
depending on data partitioning. Use:

int index = threadIdx.x + blockIdx.x * blockDim.x;

Declare a variable/array in shared memory. Use:
__shared__ (as prefix to the data type).

Synchronize threads to prevent data hazards. Use:
__syncthreads();

122

VI. 3. Reverse the order
of a vector of elements

GPU code for the ReverseArray kernel
(1) using a single block

124

__global__ void reverseArray(int *in, int *out) {
 int index_in = threadIdx.x;
 int index_out = blockDim.x – 1 – threadIdx.x;

 // Reverse array contents using a single block
 out[index_out] = in[index_in];
}

It is a solution too naive, which does not aspire to apply
massive parallelism. The maximum block size is 1024
threads, so that is the largest vector that this code would
accept as input.

GPU code for the ReverseArray kernel
(2) using multiple blocks

125

__global__ void reverseArray(int *in, int *out) {
 int in_offset = blockIdx.x * blockDim.x;
 int out_offset = (gridDim.x – 1 – blockIdx.x) * blockDim.x;
 int index_in = in_offset + threadIdx.x;
 int index_out = out_offset + (blockDim.x – 1 – threadIdx.x);

 // Reverse contents in chunks of whole blocks
 out[index_out] = in[index_in];
}

A more sophisticated version
using shared memory

126

GPU code for the ReverseArray kernel
(3) using multiple blocks and shared memory

127

__global__ void reverseArray(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 syncthreads();

 // Reverse local arrays within each block
 temp[lindex] = temp[blockDim.x-lindex-1];
 syncthreads();

 // Reverse contents in chunks of whole blocks
 out[threadIdx.x + ((N/blockDim.x)-blockIdx.x-1) * blockDim.x] = temp[lindex];
}

VI. 4. Matrix product

Typical CPU code written in C language

 C = A * B.
 All square matrices of size N * N.
 Matrices are serialized into vectors to

simplify dynamic memory allocation.

129

void MxMonCPU(float* A, float* B, float* C, int N);
{
 for (int i=0; i<N; i++)
 for (int j=0; j<N; j++)
 {
 float sum=0;
 for (int k=0; k<N; k++)
 {
 float a = A[i*N + k];
 float b = B[k*N + j];
 sum += a*b;
 }
 C[i*N + j] = sum;
 }
}

A

B

C

N

N N

CUDA version for the matrix product:
A draft for the parallel code

130

__global__ MxMonGPU(float* A, float* B, float* C, int N);
{
 float sum=0;
 int i, j;
 i = threadIdx.x + blockIdx.x * blockDim.x;
 j = threadIdx.y + blockIdx.y * blockDim.y;
 for (int k=0; k<N; k++)
 {
 float a = A[i*N + k];
 float b = B[k*N + j];
 sum += a*b;
 }
 C[i*N + j] = sum;
}

A

B

C

N

N N

131

 Each thread computes a single element of C.
Matrices A and B are loaded N times from video memory.

 Blocks accomodate threads in groups of 1024 threads
(internal CUDA constraint in Fermi and Kepler). That way,
we may use 2D blocks composed of 32x32 threads each.

N
N

N N

X=C(x, y)

WidthA

HeightA

WidthB

HeightA

WidthB

C A B
· · · · · · · · · · · · · · ·

· · · · · · ·
· · · ·

· · · ·
· · · · · ·

· · · ·

· · · ·
· · · · · ·

· · · · · · ·
· · · ·

· · · ·
· · · · · ·

· · · ·

· · · ·
· · · · · ·

Grid
Block

Th(x,y) dim2 dimBlock(BLOCKSIZE, BLOCKSIZE);
dim2 dimGrid(WidthB/BLOCKSIZE, HeightA/BLOCKSIZE);
...
MxMonGPU <<<dimGrid,dimBlock>>> (A, B, C, N);

CUDA version for the matrix product:
Explaining parallelization

CUDA version for the matrix product:
Analysis

132

 Each thread requires 10 registers, so we can reach the
maximum amount of parallelism in Kepler:

2 blocks of 1024 threads (32x32) on each SMX. (2x1024x10 = 20480
registers, which is lower than 65536 registers available).

 Problems:
Low arithmetic intensity.
Demanding on memory bandwidth, which becomes the bottleneck.

 Solution:
Use shared memory on each multiprocessor.

133

 The 32x32 submatrix Csub computed by
each thread block uses tiles of 32x32
elements of A and B which are repeatedly
allocated on shared memory.

 A and B are loaded only (N/32) times
from global memory.

 Achievements:
Less demanding on

memory bandwidth.
More arithmetic intensity.

A

B

C

Csub

MM M M

M
M

M
M

N
N

N N

Using shared memory:
Version with tiling for A and B Tiling: Implementation details

 We have to manage all tiles involved within a thread block:
Load in parallel (all threads contribute) the input tiles (A and B) from

global memory into shared memory. Tiles reuse the shared memory space.
 __syncthreads() (to make sure we have loaded matrices before

starting the computation).
Compute all products and sums for C using tiles within shared memory.

Each thread can now iterate independently on tile elements.

 __syncthreads() (to make sure that the computation with the tile is
over before loading, in the same memory space within share memory, two
new tiles of A and B in the next iteration).

134

A trick to avoid shared memory bank conflicts

 Rationale:
The shared memory is structured into 16 (pre-Fermi) or 32 banks.
Threads within a block are numbered in column major order, that is,

the x dimension is the fastest varying.

 When using the regular indexing scheme to shared
memory arrays: shData[threadIdx.x][threadIdx.y], threads
within a half-warp will be reading from the same column,
that is, from the same shared memory bank.

 However, using shData[threadIdx.y][threadIdx.x],
threads within a half-warp will be reading from the same
row, which implies reading from a different bank each.

 So, tiles store/access data in shared memory transposed.
135

Tiling: The CUDA code for the GPU kernel

136

__global__ void MxMonGPU(float *A, float *B, float *C, int N)
{
 int sum=0, tx, ty, i, j;
 tx = threadIdx.x; ty = threadIdx.y;
 i = tx + blockIdx.x*blockDim.x; j = ty + blockIdx.y*blockDim.y;
 __shared__ float As[32][32], float Bs[32][32];

 // Traverse tiles of A and B required to compute the block submatrix for C
 for (int tile=0; tile<(N/32); tile++)
 {
 // Load tiles (32x32) from A and B in parallel (and store them transposed)
 As[ty][tx]= A[(i*N) + (ty+(tile*32))];
 Bs[ty][tx]= B[((tx+(tile*32))*N) + j];
 __syncthreads();
 // Compute results for the submatrix of C
 for (int k=0; k<32; k++) // Data have to be read from tiles transposed too
 sum += As[k][tx] * Bs[ty][k];
 __syncthreads();
 }
 // Write all results for the block in parallel
 C[i*N+j] = sum;
}

137

Without loop unrolling: Unrolling the loop:

 ...
 __syncthreads();

 // Compute results for that tile
 for (k=0; k<32; k++)
 sum += As[tx][k]*Bs[k][ty];

 __syncthreads();
}
C[indexC] = sum;

 ...
 __syncthreads();

 // Compute results for that tile
 sum += As[tx][0]*Bs[0][ty];
 sum += As[tx][1]*Bs[1][ty];
 sum += As[tx][2]*Bs[2][ty];
 sum += As[tx][3]*Bs[3][ty];
 sum += As[tx][4]*Bs[4][ty];
 sum += As[tx][5]*Bs[5][ty];
 sum += As[tx][6]*Bs[6][ty];
 sum += As[tx][7]*Bs[7][ty];
 sum += As[tx][8]*Bs[8][ty];

 ····
 sum += As[tx][31]*Bs[31][ty];
 __syncthreads();
}
C[indexC] = sum;

A compiler optimization: Loop unrolling

138

0

25

50

75

100

G
FLO

PS

4x4 8x8 12x12 16x16

Tile size (32x32 unfeasible on G80 hardware)

Tiling only
Tiling & Unrolling

Performance on the G80 for tiling & unrolling

VII. Bibliography and tools

CUDA Zone:
Basic web resource for a CUDA programmer

[developer.nvidia.com/cuda-zone]
140

- Languages (C/C++, Python).
- Libraries (cuBLAS, cuFFT).
- Directives (OpenACC).
- Templates (thrust).

- Compiler (NVCC).
- Debugger (GDB).
- Profiler (cudaprof and Visual).
- Development envir. (Nsight).
- Code examples.

- Eclipse.
- Matlab.
- CUDA Fortran.
- GPUDirect.
- SDK for the LLVM compiler.

CUDA 6 Production Release.
Free download for all platforms and users

[developer.nvidia.com/cuda-downloads]

141

CUDA books: From 2007 to 2013

 GPU Gems series [developer.vidia.com/content/GPUGems3/gpugems3_part01.html]
 List of CUDA books in [www.nvidia.com/object/cuda_books.html]

142

Sep'07 Feb'10 Jul'10 Abr'11 Oct'11

Nov'11 Dic'12 Jun'13 Oct'13 Sep'14

Guides for developers and more documents

Getting started with CUDA C: Programmers guide.
[docs.nvidia.com/cuda/cuda-c-programming-guide]

For tough programmers: The best practices guide.
[docs.nvidia.com/cuda/cuda-c-best-practices-guide]

The root web collecting all CUDA-related documents:
[docs.nvidia.com/cuda]

where we can find, additional guides for:
Installing CUDA on Linux, MacOS and Windows.
Optimize and improve CUDA programs on Kepler platforms.
Check the CUDA API syntax (runtime, driver and math).
Learn to use libraries like cuBLAS, cuFFT, cuRAND, cuSPARSE, ...
Deal with basic tools (compiler, debugger, profiler).

143

Choices to accelerate your applications on
GPUs and material for teaching CUDA

[developer.nvidia.com/cuda-education-training] (also
available from the left lower corner of the CUDA Zone)

144

Courses on-line (free access)

More than 50.000 registered users from 127 countries over
the last 6 months. An opportunity to learn from CUDA masters:

Prof. Wen-Mei Hwu (Univ. of Illinois).
Prof. John Owens (Univ. of California at Davis).
Dr. David Luebke (Nvidia Research).

There are two basic options, both recommended:
Introduction to parallel programming:

7 units of 3 hours = 21 hours.
Provides high-end GPUs to carry out the proposed assignments.
[https://developer.nvidia.com/udacity-cs344-intro-parallel-programming]

Heterogeneous Parallel Programming:
9 weeks, each with classes (20’ video), quizzes and programming assignments.
 [https://www.coursera.org/course/hetero]

145

Tutorials about C/C++, Fortran and Python

You have to register on the Amazon EC2 services available
on the Web (cloud computing): [nvidia.qwiklab.com]

They are usually sessions of 90 minutes.
Only a Web browser and SSH client are required.
Some tutorials are free, other require tokens of $29.99.

146

Talks and webinars

Talks recorded at GTC (Graphics Technology Conference):
383 talks from 2013.
More than 500 available from 2014.

[www.gputechconf.com/gtcnew/on-demand-gtc.php]
Webinars about GPU computing:

List of past talks on video (mp4/wmv) and slides (PDF).
List of incoming on-line talks to be enrolled.

[developer.nvidia.com/gpu-computing-webinars]
CUDACasts:

[bit.ly/cudacasts]

147

Examples of webinars about CUDA 6.0

148

Developers

 Sign up as a registered developer:
 [www.nvidia.com/paralleldeveloper]
 Access to exclusive developer downloads.
 Exclusive access to pre-release CUDA installers like CUDA 6.0.
 Exclusive activities an special offers.

 Meeting point with many other developers:
 [www.gpucomputing.net]

 GPU news and events:
 [www.gpgpu.org]

Technical questions on-line:
NVIDIA Developer Forums: [devtalk.nvidia.com]
Search or ask on: [stackoverflow.com/tags/cuda] 149

Developers (2)

 List of CUDA-enabled GPUs:
 [developer.nvidia.com/cuda-gpus]

 And a a last tool for tuning code: The CUDA Occupancy
Calculator

[developer.download.nvidia.com/compute/cuda/
CUDA_Occupancy_calculator.xls]

150

Future developments

Nvidia’s blog contains articles unveiling future technology
to be used within CUDA. It is the most reliable source about
what’s next (subscription recommended):

[devblogs.nvidia.com/parallelforall]

Some recommended articles:
“5 Powerful New Features in CUDA 6”, by Mark Harris.
“CUDA 6.0 Unified Memory”, by Mark Ebersole.
“CUDA Dynamic Parallelism API and Principles”, by Andrew Adinetz.
“NVLINK, Pascal and Stacked Memory: Feeding the Appetite for Big

Data”, by Denis Foley.
“CUDA Pro Tip: Increase Application Performance with NVIDIA GPU

Boost”, by Mark Harris.
151

Thanks for your attention!

You can always reach me in Spain
at the Computer Architecture Department
of the University of Malaga:

e-mail: ujaldon@uma.es
Phone: +34 952 13 28 24.
Web page: http://manuel.ujaldon.es

(english/spanish versions available).

Or, more specifically on GPUs,
visit my web page as Nvidia CUDA Fellow:

http://research.nvidia.com/users/manuel-ujaldon

152

