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NVIDIA.

Tutorial contents for today [118 slides]

1. Introduction. [17 slides]
2. Architecture. [21]
1. CUDA hardware model. [3]
ne first generation: Tesla (2007-2009). [3]
he second generation: Fermi (2010-2011). [3]
ne third generation: Kepler (2012-2014). [6]
e fourth generation: Maxwell (2015-?). [5]
6 Summary by generation. [1]
3. Programming. [15]
4. Syntax. [16]
1. Basic elements. [10]
2. A couple of preliminary examples. [6]
5. Compilation and tools [12]
6. Examples: VectorAdd, Stencil, MxM. [25]
/. Bibliography, resources and tools. [12] 2

Manuel Ujaldon - Nvidia CUDA Fellow

IIIII A.



NVIDIA.

Prerequisites for this tutorial

~You (probably) need experience with C.

~You do not need parallel programming background

(but it helps if you have it).

~You do not need knowledge about the GPU architecture:
We will start with the basic pillars.

~You do not need graphics experience. Those were the old
times (shaders, Cg). With CUDA, it is not required any
knowledge about vertices, pixels, textures, ...
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Welcome to the GPU world
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The characters of this story:
The CUDA family picture

GPU Computing Applications

Libraries and Middleware

CUSPARSE OpenCurrent

Programming Languages

NEATE
Fortran Python DirectCompute
Wrappers

Directives
(e.g. OpenACC)

CUDA-Enabled NVIDIA GPUs

Kepler Architecture GeForce 600 Series KeplerSeries Uesluzt
(compute capabilities 3.x) i sl TeslaK10

Fermi Architecture GeForce 500 Series

(compute capabilities 2.x) GeForce 400 Series QUAATORErmiSEries Ueslu2l Serles

Tesla Architecture GeForce 200 Series QuadroFX Series

(compute capabilities 1.x) Veslulyseriss

W <=
Hi érformance

~ Computing

e 8 Series

6
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The impressive evolution of CUDA

Year 2008 Year 2015
100.000.000
_capable S 6m5000‘000 CUDA-capable GPUs
T B EEEEEE o i oo
150.000 gy DD ERDERERRERE 3.000.000 cuoa downlads per year
CUDA downloads DEOEEEREERIEEE (thatis one every 9 seconds)

S R e
supercomputer

in top500.0rg

in TOPS00.9i9
oo | QUTUOCU0TG00000RAUO00G0RIUT0VE0NAE" e o0 vty

60 L. 3448884 o
university courses g ﬁg?#g#g 840 URIVersity courses

-2 B | EEEEEEEEEEEEEER 200,
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Worldwide distribution
of CUDA university courses
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Surnmary of GPU evolution

2001 First many-cores (vertex and pixel processors).
:2003: Those processor become programmable (with Cg).
:2006: Vertex and pixel processors unify.

2007: CUDA emerges.

-2008: Double precision floating-point arithmetic.

»2010: Operands are IEEE-normalized and memory is ECC.
'2012: Wider support for irregular computing.

:2014: The CPU-GPU memory space is unified.

Still pending: Reliability in clusters and connection to disk.

9
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The 3 features which have made
the GPU such a unique processor

Simplified.
The control required for one thread is amortized by 31 more (warp).

Scalability.

Makes use of the huge data volume handled by applications to
define a sustainable parallelization model.

Productivity.

Endowed with efficient mechanisms for switching immediately to
another thread whenever the one being executed suffers from stalls.

CUDA essential keywords:
Warp, SIMD, latency hiding, free context switch.

10
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What is CUDA?
“Compute Unified Device Architecture

"

A platform designed jointly at software and hardware levels to
make use of the GPU computational power in general-purpose
applications at three levels:

Software: It allows to program the GPU with minimal but
powerful SIMD extensions to enable heterogeneous
programming and attain an efficient and scalable execution.

Firmware: It offers a driver oriented to GPGPU
programming, which is compatible with that used for
rendering. Straightforward APIs to manage devices, memory,
etc.

Hardware: It exposes GPU parallelism for general-purpose
computing via a number of multiprocessors endowed with

cores and a memory hierarchy.

11
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NVIDIA.

CUDA C at a glance

Essentially, it is C language with minimal extensions:

Programmer writes the program for a single thread, and the code is
automatically instanciated over hundreds of threads.

CUDA defines:

An architectural model:
With many processing cores grouped in multiprocessors who share a SIMD control unit.

A programming model:

Based on massive data parallelism and fine-grained parallelism.
Scalable: The code is executed on a different number of cores without recompiling it.

A memory management model:
More explicit to the programmer, where caches are not transparent anymore.
Goals:

Build a code which scales to hundreds of cores in a simple way, allowing
us to declare thousands of threads.

Allow heterogeneous computing (between CPUs and GPUSs).

12
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Heterogeneous Cornputing (1/4)

Terminology:
‘Host: The CPU and the memory on motherboard [DDR3 as of 2013].

'Device: The graphics card [GPU + video memory]:
'GPU: Nvidia GeForce/Tesla.
'Video memory: GDDR5 as of 2015.

Host Device

13
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Heterogeneous Computing (2/4)

~ CUDA executes a program on a device (the GPU), which is seen as a co-
processor for the host (the CPU).

~ CUDA can be seen as a library of functions which contains 3 types of
components:

~ Host: Control and access to devices.
- Device: Specific functions for the devices.
~ All: Vector data types and a set of routines supported on both sides.

4 ) 4 N
CPU (host
Cores [ Caches (device)
\- J . J

3-channel J (192 bits = 24 bytes)

@ 1.333 GHz|] 32 GB/s. 384 bits @ 3 GHz I 144 GB/s.

System Memory

Video memory
(D D R3) PCl-e 3.0: 8 GB/s (GDDR5)

14
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eneous Computing (3/4

Application Code

- Rest of Sequential
Compute-Intensive Functions | / CPU Code

GPU Use GPU to Parallelize T

The code to be written in CUDA can be lower than 5%,
but exceed 50% of the execution time if remains on CPU.




Heterogeneous Computing (4/4)
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NVIDIA.

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadldx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}

/1 Synchronize (ensure all the data is available)
__syncthreads();

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

void fill_ints(int *x, int n) {
fill_Ln(x, n, 1);

DEVICE CODE:
Parallel function
-written in CUDA.

int main(void) {
int *in, *out; // host copies of a, b, ¢
int *d_in, *d_out; // device copies of a, b, ¢
int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values
in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);

// Copy to device
cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);

// Copy result back to host
cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup

free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

& |
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I - Parallel code.

'HOST CODE: /
- Serial code.

| - Serial code.
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Simple Processing Flow (1/3)

PCI Bus =

LI

LY

1.Copy input data from CPU
memory to GPU memory.

17
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Simple Processing Flow (2/3)

PCI Bus

1.Copy input data from CPU
memory to GPU memory.

2.Load GPU program and
execute, caching data on
chip for performance.

18
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Simple Processing Flow (3/3)

PCI Bus

A

1.Copy input data from CPU
memory to GPU memory.

2.Load GPU program and
execute, caching data on
chip for performance.

3.Transfer results from GPU
memory to CPU memory.

19
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NVIDIA.

The classic example
int main(void) { Salida:
prlntf("I.{ello World!\n"); $ nvee hello.cu
return 0;
S a.out
} Hello World!
$

- Standard C that runs on the host.

<~ NVIDIA compiler (nvcc) can be used to compile programs
with no device code.

20
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Hello World! with device code (1/2)

~_global  void mykernel (void)

{
}

int main(void)

{

mykernel<<<l,1>>>();

“Two new syntactic elements:

'The CUDA C keyword  global
indicates a function that runs on the
device and is called from host code.

‘mykernel<<<1,1>>>is a CUDA
kernel launch from the host code.
printf("Hello World!\n");

eturn 0 ‘That's all that is required to
) execute a function on the GPU!
‘nvcc separates source code into host and device.

‘Device functions (like mikernel()) are procesed by
NVIDIA compiler.

‘Host functions (like main()) are processed by host

compiler (gcc for Unix, c1.exe for Windows). N
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Hello World! with device code (2/2)

~_global  void mykernel (void)

{ Output:
}
S nvcc hello.cu
. . . $ a.out
d
int main(void) { Hello World!
mykernel<<<l,1>>>(); $

printf("Hello World!\n");

return 0;

- mykernel() does nothing this time.

~ Triple angle brackets mark a call from host code to device code.
~ Also called a “kernel launch”.
- Parameters <<<1,1>>> describe CUDA parallelism (blocks and threads).

22
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David A. Patterson & John Hennessy
Organization and Computer Design

Mc-Graw-Hill (1995)
Chapter 9, page 569
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Overview of CUDA hardware generations

N
N

N
N

N
o

‘ 3D Memory

NVLink

—_
(0.0]

—_
o

—_
N

Illkhﬁencnnau
Unified memory

DX12

-
o

|||| k&aphar

l Fermi
| FP64

N RN O O

GFLOPS in double precision for each watt consumed
o

‘ CUDA

2008 2010 2012 2014 2016 -
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The CUDA hardware model: SIMD processors
structured, a tale of hardware scalability

A GPU consists of:

GPU

N multiprocessors (or SMs), each Multiprocessor N
containing M cores (or stream procs). Multiprocessor 2
1 . Multiprocessor 1
Massive parallelism:
I Core 1 Core 2 ore M Control
Applied to thousands of threads. D mm ey

Sharing data at different levels.
Heterogeneous computing:

GPU: G80 | GT200 | GF100 | GK110
Data intensive. (Tesla) | (Tesla) |(Fermi)| (Kepler)
Fine-grain parallelism. Time period 2006-07 2008-09 2010-11  2012-13

CPU: N (multiprocs.) 16 30 14-16 13-15

M (cores/multip.) 8 8 32 192
Number of cores 128 240 448-512 2496-2880

Control/management.
Coarse-grain parallelism.

27
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Mernory hierarchy

< Each multiprocessor has: GPU
© A register file. riprocessor &
~ Shared memory. Multiprocessor 2

Multiprocessor 1

~ A constant cache and a texture
cache, both read-only.

~ Global memory is the actual | | Jesss | |

Unit

Video memory (GDDRS): W e o o | Processor M (SIMD)

~ Three times faster than the T I i

DDR3 used by the CPU, but...
<~ ... around 500 times slower

than shared memory! (DRAM

28
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NVIDIA.

The first generation: G80 (GeForce 8800)

Multiprocessor 16

Multiprocessor 2
Multiprocessor 1  (CUDA thread-blocks are mapped onto multiprocessors)

Shared memory (16 KB)
: : : Control
Registers Registers Registers :

o - | Unit
XX (issues
Core1  Core 2 Core 8 SIMD

(1.35 GHz) instructions)

|
s ceEe CUDA kernels are
mapped to GPU cores)

Global memory (up to 1.5 GB) V(GDDRB @ 2x 800 MHz)

30
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The first generation: GT200 (GTX 200)

Multiprocessor 30

Multiprocessor 2

Multiprocessor 1

(CUDA thread-blocks are mapped onto multiprocessors)

Shared memory (16 KB)

Registers Registers |
(1.30 GHz)

|

: Control
Regist
egisters T
Core 8 e

instructions)

Texture cache

CUDA kernels are
mapped to GPU cores)

Global memory (up to 4 GB) (GDDRS3, 5{2 bits @ 2x 1.1GHz = 141.7 GB/s)

Manuel Ujaldon - Nvidia CUDA Fellow
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Scalability for future generations:
Alternatives for increasing perforrnance

|

NVIDIA.

'Raise the number of
multiprocessors (basic node),
that is, we grow over the Z
dimension. This is the path
followed by 1%t gener. (16 to 30).

'Raise the number of processors
within a multiprocessor, which
means growing over the X
dimension. That is what the 2"
and 3 geners. have done (from
8 to 32 and from there to 192).

‘Increment the size of shared
memory (extending the Y dim.).

Multiprocessor 30
> (scalability within the 15! gener.)

/

Multiprocessor 2

Multiprocessor 1

Shared memory

Registers

|
!

Registers

Core 1

Core 2

(scalability in

2 and ¢

Registers

Core 8

3d geners.)

—>

Texture cache

Global memory

32

>N Manuel Ujaldon - Nvidia CUDA Fellow




rw

ll. 3. The second generation:
Fermi (GF1xx)

<ANVIDIA.




|

NVIDIA.

Fermi hardware compared to its predecessors

GPU architecture

Commercial sample GeForce 8800 GTX 200
Year released 2006 2008

Number of transistors 681 millions 1400 millions 3000 millions
Integer and fp32 cores 128 240 512

fp64 (double precision) 0 30 256
ﬁc?:t?rlmz-p;c?icnl:lgpnee g None 30 madds/cycle 256 madds/cycle
Warp scheduler(s) 1 1 2

Shared memory size 16 KB 16 KB 16 KB + 48 KB
L1 cache size None None (or vice versa)
L2 cache size None None 768 KB
DRAM error correction No No Yes (elective)
Address bus (width) 32 bits 32 bits 64 bits

GF100 (Fermi)

GTX 580
2010

Manuel Ujaldon - Nvidia CUDA Fellow
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Fermi: An architectural overview

~Up to 512 cores (16 SMs, each endowed with 32 cores).
< Dual scheduler at the front-end of each SM.
~ 64 KB. on each SM for shared memory and L1 cache.

o
o
©
=
[}
<
=
8
. -

GigaThead

35
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The mernory hierarchy

o Fermi is the first GPU with a Thcad
L1 cache, combined with shared
memory for a total of 64 KB for

each SM (32 cores). 64 KB are y
split into 3:1 or 1:3 proportions ]
(programmer’s choice). 1

~ There is also a L2 cache of L2 Cache
/68 KB. with data conherence
shared by all multiprocessors
(SMs).

36
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I. 4. The third generation:
Kepler (GK1xx)

<ANVIDIA.




>

NVIDIA.

Kepler GK110 Block Diagram

/.1 billion transistors.
15 SMX multiprocs.
> 1 TFLOP FP64.

1.5 MB L2 Cache.
384-bit GDDRS5.

PCI Express Gen3.
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Multiprocessor evolution:
Frorn SMs in Ferri to SMXs in Kepler

Instruction Cache
Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
S I R ey 1 R 3 RS

Register File (65,536 x 32-bit)

3 RS 1 T 3
SFU Core Core

-
™

SFU Core Core

Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit
Z 2

SFU Core Core

SFU Core Core
Register File (32,768 x 32-bit)

4 S 2 L

Core Core

SFU Core Core

SFU Core Core
Core Core

SFU Core Core
Core Core

SFU Core
Core

Con SFU Core

Corm SFU Core

o SFU Core
SFU Core
SFU Core

SFU Core

SFU Core

64 KB Shared Memory / L1 Cache
48 KB Read-Only Cache

Tex Tex

Tex Tex

ncf,%k Nvidia CUDA F
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The SMX rultiprocessor

Instruction scheduling N
an d issu i ] g | n wa rps Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler F ro n t e n d

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
s 2 S 2 L 4 L 2 L 2 4

Register File (65,536 x 32-bit)

4+ 3 4 3 3
LorsT SFU Core Core Core

-
=
=
-
-

SFU Core Core

(<]
o
s

SFU Core Core

(<]
=
a

SFU Core Core

(<]
o
s

Instructions execution.
512 functional units:

192 for ALUSs.

192 for FPUs S.P.

64 for FPUs D.P.

32 for load/store.

32 for SFUs (log,sqrt, ...)

SFU Core Core

o
o
)

SFU Core Core

o
o
3

Back-end

SFU Core Core

(<]
o
)

SFU [Core Core

o
S
3

o
=
3

SFU Core Core

SFU Core Core

(<]
=
3

SFU Core Core

(<]
°
a

SFU Core Core

(<]
o
s

SFU Core Core

(=]
o
a

SFU Core Core

o
o
E}

SFU Core Core

o
o
3

SFU [Core Core

M e mo ry a Ccess Tex Tex Tex Tex Tex Tex Tex Tex I n te rfa Ce

Tex Tex Tex Tex Tex Tex

o
]
E)

oo
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Express as rnuch parallelism as possible:
SM¥s (Kepler) are wider than SMs (Fermi)

Tetris (tile = warp_instr.): Example: Kernel with blocks of 384 threads (12 warps).
- Issues 4 warp_instrs. Block 0- Block 1:

-Execr:]utesduptolowarps= B D D CRCUSI D P e e P
320 threads. A - . A O

- Warp_instrs. are symmetric .
A i A 3 6 i

and executed all in one cycle.
load

Color code:

. for instructions using “int” :instr. .......... Sqrt .......
X ' warp - ..
B for instrs. using “float”. \_) Ke .
pler:
r Issues 4 . .- - Issues 4 warps x 2 instructions.
warp_instrs Fermi: - - Executes up to 16 warp_instrs.
r = ' G80: Takes - Issues 2. _l_l (up to 512 functional units in parallel)
— 4 cycles for - Executes
xecutinogy  uwptoS. " ot it
warp_instrs. ..I ---- 29 SFU
The pl is the GPU scheduler! —l
YoS Eaar1y$£t§te r%ovingsgieeceg ﬁ:r _l_l I jﬂjj 32 LD/ST
there are no data dependencies. |
_l _l 64 DP FPU
A | o i
J SM in 6x32 = 192 ALUs 192 SP FPU v
< > G80: Fermi: )
Executes up to 10 warp_instrs. 16 U.F. 100 functional units SMX (Kepler): 512 functional units 41

<

NVIDIA.
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Thread Level Parallelisrn (TLP) and
Instruction Level Parallelism (ILP)

Increase parallelism horizontally via TLP:
More concurrent warps (larger blocks and/or more active blocks per SMX).
—>

Increase S i B
parallelism P DS S S B O B D B A -

vertically

vallp: B S S S P ) S S

independent | 221 20 1ol of o iof o jd sd o {1 S S S S
p

instructions. | NI N 0 At A A 0t

\4

» SMXs can leverage available ILP interchangeably with TLP:
~ It is much better at this than Fermi.

~ Sometimes is easier to increase ILP than TLP (for
example, a small loop unrolling):
- # of threads may be limited by algorithm or hardware limits.

-~ We need ILP for attaining a high IPC (Instrs. Per Cycle).

Manuel Ujaldon - Nvidia CUDA Fellow



|

NVIDIA.

Kepler GPUs can hold together all
forrns of parallelisrm. Exarmple: K40.

1: Thread-level parallelism (TLP)

f “ ‘l ‘l ‘l ‘l ‘l ‘l ‘l ‘l ‘l ‘l ‘l ‘l ‘l ‘l ‘l ‘l ‘l ‘l... SMXO

N N P I P D e P | Aol ood
[ P e P P e |
oo o ol o ol ol o oM ol ol M
O O D D D I I P
N N P I P P P P |
I P I e I I P e e |
d 4 4 4 4 4 4 4 4 4 A4
(N D I e I P I e
N P I P I P I e e
(I P O I P I P e I |
[ P P P D I P |
oo ool ol o ool ool oM oMl ol M

~ "

[ N I P

r g g g g— g— g——"

IR [ I [ e i
VP [P [ e e

L
O RERRRERRER IR

Ny ey ey ey ey ey plla—
----- ------ r L]
P [ P - —

........ Jfr"p"}"'p"'p"ﬁ'

4: Vectorial (warp = 32) The K40 can schedule up to

. 64x15 warps in a single cycle:
All this volume represents 60x15 warps! 30720 threads in 1.12 ns.

~Imagine a 3D tetris with 15 boxes and up to 64 pieces
falling down simultaneously on each of them, because that

is the way K40 works when all parallelism is deployed. .

"
—] ok ol od o ok

111111‘...
4 ol ol ol ol e d. .

2: Instrs. (ILP)

- SMX 15

G
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Case study: Zernike mormnents

o =

GPU

32-bits FPU | 64-bits FPU | Load/store
resources

| Fermi

32% 32% 16% 16% 4%

‘ 37.5% 37.5% 12.5% 6.25% 6.25%
Kernel for 54% 21% 0% 25% 0%
Zernike

Better Kepler Fermi Kepler Fermi Fermi

Fermi is more balanced in this case.

With the resources distribution in Kepler, the execution of
integer arithmetic improves, but the floating-point arithmetic
and the load/store worsens. All the others are not used.

IIIII A.
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Detailed Instruction Mix Visualization
Visual Profiler and NSight EE

1 Instruction Execution Counts

The Following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each class
the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The "Inactive”

result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due to

divergence.
i Floating-Point Operation Counts
The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and

for each class the chart shows the percentage of thread execution cycles that were devoted to executing operations in that class. The
results do not sum to 100% because non-floating-point operations executed by the kernel are not shown in this chart.

Execution Count (% of total)

Execution Count (% of total)

NVIDIA.



The way the GPU front-end works:
(1) How warps are scheduled

S S D B S i
o o d o o g P S S B O B ) B S

o=
o JS )|
= JE
Ju

- s
4 .

SM (Fermi) SMX (Kepler)
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The interface between front-end & back-end:
(2) How warps are issued

“In the 5 cydis shown, we could Bai% xecuted all this work.

- In Fermi, there is a deficit in SFUs (blue)gwhereas in Kepler, the
deficit goesE load/store units (green).

- Kepler balances double precision (red) aMas a good surplus in
“int” and-“ﬂoat” computations, an evidence thatieal codes have

more presence of orange and, overall, yellomilistmictions.

o o o e T [

SM (Fermi) SMX (Kepler)

Manuel Ujaldon - Nvidia CUDA Fellow
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The way the GPU back-end works:
(3) Warps execution

~ Let us assume that when we sta====3xecution there are
few warps pel‘ﬁling to be executed:  gym

-~ Two sing precision warps (orange). a4
~ Two double precision warps (red). 55

> Looks I!Fthat it is smart for the fro

to work

Yae4°

ahead afithe back-end (prefetching) in

mazimize throughput.
o

SMX (Kepler)
48
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Sorne remarks about the “tetris” rmodel

'In Fermi, red tiles are not allowed to be combined with otheri
'In Kepler, we cannot take 8 warp_instrs. horizontally, bricks
must have a minimum height of 2. -
'Instructions must have different latency, so those consumlng
more than one cycle (i.e. double precision floating-point)
should expand vertically.

'If the warp faces divergencies, it will take more than one cycIe
We can represent that case similarly to the one above.

'Codes usually have more yellow tiles (“int” predominates).
'Some bricks are not complete because the scheduler cannot
find 4x2 structures free of dependencies. e o

. . . JE S
'Bricks can assemble non-contiguous tiles.
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Maxwell and SMM multiprocessors
(for GeForce GTX 750 Ti, GM107 with 5 SMM)

1870 Mt. PCI Express 3.0 Host Interface
148 mm?,
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PolyMorph Engine 2.0 NVIDIA.
[ Tessellator | |
Attribute Setup | { Stream Output
Instruction Cache
Instruction Buffer Instruction Buffer
Warp Scheduler Warp Scheduler
Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
Sl e s s
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) .
Core Core Core Core Core Core Core
\ Kee p tI Ie Sa I I Ie 4 Wa rp Core Core Core Core Core Core Core
Core Core Core Core Core Core Core
schedulers, and the same LD/
- Core Core Core SFU Core Core Core Core
S I a I Id SI U u I I ItS n Core Core Core SFU Core Core Core Core
Core Core Core SFU Core Core Core Core
- Red l I Ce tI I e I I ' I I I I be r Of Core Core Core SFU Core Core Core
Texture / L1 Cache
]
cores for t and float:
1n Oat.
Instruction Buffer Instruction Buffer
- Warp Scheduler Warp Scheduler
rOI I I O u I l I S n Dispatch Unit Dispatch Unit spatch Unit Dispatch Unit
- S - S
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
Core Core Core Core |Core Core  Core LDST  SFU
Core Core Core Core Core Core Core SFU
Core Core Core Core Core Core SFU
Core Core Core Core Core Core SFU
Core Core Core Core Core Core SFU
Core Core Core Core Core SFU
Core Core SFU Core Core Core SFU
Core Core  LD/ST SFU Core Core Core SFU
Texture / L1 Cache
52
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Sorne cormmercial models on 28 nm.

GeForce GTX GeForce GTX GeForce GTX GeForce GTX

650 650 Ti 750 Ti 660

[E e Gkao7 GK106 GM107 GK106

| Kepler Kepler Maxwell Kepler
Multiprocessors IS0 4 SMX 5 SMM 5 SMX
PSS 192x2=384  192x4=768  128x5=640 192 x5 = 960
|Frequiency of cores BTV 13X 3V 925MHz 1020 - 1085 MHz 980 - 1033 MHz
DRAM bus width  [REEEEPLRN 128 bits 128 bits 192 bits
[PRAVEEEE 2x2500MHz - 2x2700MHz  2x2700 MHz  2x 3000 MHz
I 80 Gbytes/s. 86.4 Gbytes/s. 86.4 Gbytes/s. 144 Gbytes/s.
| 1 or 2 Gbytes 1 or 2 Gbytes 1 or 2 Gbytes 2 Gbytes

| 6 pins 6 pins None 6 pins
Maximum TDP | 64 W. 110 W. 60 W. 140 W.
Million transistors | 1300 2540 1870 3175 mm2 ?
(Die'sizen PR 221 mm2 148 mm2 275 mm2 ?

Approx. cost (2 GB) 100 € 110 € 110 € 150 €

53
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Major enhancements

MAXWELL
1%t Generation

KEPLER

135%
2X

-

Manuel Ujaldon - Nvidia CUDA Fellow

<
NVIDIA.



<

NVIDIA.

Power efficiency

GTX 750 T
1% Gen Maxwell

ia
>

)
>

GTX 650 Ti
Kepler

%

GTXS550T
Fermi

Performance/Watt

—
-

Ox

2010 2012 2014

55
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Il. 6. A summary of four generations
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Scalability for the architecture:
A surnrary of four generations

Tesla Fermi Kepler Maxwell

GK104 GK110 GK110 GK110 GM107  GM204
Time frame 2006 2008 2013 2014 2014 2014
/07 /09 /14 /15 /15 /15
CUDA Compute 3.7
Capability

N (multiprocs.) 16

M (cores/multip.) [ 8 32 48 192 192 192 192 128 128

\inleligelleelg=l 128 240 512 336 1536 2688 2880 5760 640 2048

Manuel Ujaldon - Nvidia CUDA Fellow
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Frorn POSIX threads in CPU
to CUDA threads in GPU

<

NVIDIA.

POSIX-threads in CPU

#define NUM_THREADS 16
void *myfun (void *threadId)
{
int tid = (int) threadId;
float result = sin(tid) * tan(tid);

pthread_exit(NULL),
by

void main()

{
int t;
for (t=0; t<NUM_THREADS; t++)
pthread_create(NULL,NULL,myfun,t);
pthread_exit(NULL);

}

<

NVIDIA.

CUDA in GPU, followed by 2D configuration: Grid of

host code in CPU

#define NUM_BLOCKS 1
#define BLOCKSIZE 16
__global__ void mykernel()

{

int tid = threadIdx.x;

float result = sin(tid) * tan(tid);

}

void main()

{

dim3 dimGrid (NUM_BLOCKS);

dim3 dimBlock (BLOCKSIZE);
mykernel< < <dimGrid, dimBlock>>>();
return EXIT_SUCCESS;

}

2x2 blocks, 4 threads each

#define NUM_BLX 2
#define NUM_BLY 2
#define BLOCKSIZE 4
__global__ void mykernel()

{
int bid=blockIdx.x*gridDim.y+blockIdx.y;

int tid=bid*blockDim.x+ threadIdx.x;
float result = sin(tid) * tan(tid);

}

void main()

{
dim3 dimGrid (NUM_BLX, NUM_BLY);
dim3 dimBlock(BLOCKSIZE);
mykernel<<<dimGrid, dimBlock>>>();
return EXIT_SUCCESS;

}

60
Manuel Ujaldon - Nvidia CUDA Fellow




<

NVIDIA.

The CUDA programming model

The GPU (device) is a highly multithreaded coprocessor
to the CPU (host):
Has its own DRAM (device memory).
Executes many threads in parallel on several multiprocessor cores.

Multiprocessor 1 Multiprocessor 2 o« o o Multiprocessor N

CUDA threads are extremely lightweight.
Very little creation overhead.
Context switching is essentially free.

Programmer’s goal: Declare thousands of threads to
ensure the full utilization of hardware resources.

61
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The model instanciates over few features
to produce the commercial catalog

> We may expect higher differences for these features
between models associated to different generations.

- Differences will also grow when graphics cards aim to
different ends:

~$300-500 high-end graphics card.

~$150-250 mid-end.

~$60-120 low-end.

>Video memory may also differ when a new technology
emerges. Last step forward: GDDR5 vs. GDDR3.

> Graphical features are different too, but that is out of the
scope of this tutorial.
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Structure of a CUDA prograrr

Each multiprocessor (SM) processes batches of blocks one
after another.

Active blocks = blocks processed by one multiprocessor in one
batch.

Active threads = all the threads from the active blocks.

Registers and shared memory within a multiprocessor are
split among the active threads. Therefore, for any given
kernel, the number of active blocks depends on:

The number of registers that the kernel requires.
How much shared memory the kernel consumes.

63
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Preliminary definitions

Programmers face the challenge of exposing parallelism for
thousands cores using the following elements:

Device = GPU = Set of multiprocessors.
Multiprocessor = Set of processors + shared memory.

Kernel = Program ready to run on GPU.
Grid = Array of thread blocks that execute a kernel.
Thread block = Group of SIMD threads that:
Execute a kernel on different data based on threadID and

blockID.
Can communicate via shared memory.

Warp size = 32. This is the granularity of the scheduler for
issuing threads to the execution units.
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The relation between hardware and software
frorn a mernory access perspective

GPU : Thread
Multiprocessor N
. § ... 3| Thread block
Multiprocessor 2

Multiprocessor 1

On-chip
memory

4 e 3|[x . 8][E . f]|criao
Memory P [

outside the
GPU chip

Gut within e ([ 2] [E- 2] [E-2

graphics card)

ond I
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Resources and limitations depending
on CUDA hardware generation (CCC)

CUDA Compute Capability (CCC)

Limitation

<3

NVIDIA.

E—
s

Threads / Block
Threads / Multiprocessor
32 bits registers / Multip.

Shared memory / Multip.

3.0,
3.5, 3.7

16

8

32

8

512

768

8K

16K

14-16

8 32

32 32

8 8
512 1024
1 024 1 536
16K 32K
o<

13-16

192

32

16

1024

2048

64K

16K,
32K, 48K

128

32

32

1024

2048

64K

64K, 96K

Hardware

Hardware

Software

Software

Software

Software

Hardware

Hardware

Scalability
Scalability
Throughput
Throughput
Parallelism
Parallelism
Working set

Working set

IIIII A.
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GPU threads and blocks

: Kepler’s limits: 1024 threads per block, 2048 threads per multiprocessor )
Blocks are
assigned to
multiprocessors
>
[Kepler’s limit: 16
concurrent blocks
Block 0 Block 1 Block 2 . ... | per multiprocessor]
. Grid 0 [Kepler’s limit: 4G blocks per grid] )

< Threads are assigned to multiprocessors in blocks, and to
cores via warps, which is the scheduling unit (32 threads).

~ Threads of a block share information via shared memory,

and can synchronize via syncthreads () calls. -




NVIDIA.

Playing with parallel constrainsts in Kepler
to maxirmize concurrency

> Limits within a multiprocessor: [1] 16 concurrent blocks,
[2] 1024 threads/block and [3] 2048 threads total.

> 1 block of 2048 threads. Forbidden by [2].
> 2 blocks of 1024 threads. Feasible on the same multiproc.
> 4 blocks of 512 threads. Feasible on the same multiproc.

> 4 blocks of 1024 threads. Forbidden by [3] on the same
multiprocessor, feasible involving two multiprocessors.

> 8 blocks of 256 threads. Feasible on the same multiproc.

> 256 blocks of 8 threads. Forbidden by [1] on the same
multiprocessor, feasible involving 16 multiprocessors.

68
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GPU rmerory: Scope and location

(" )
. Blocks to share
> FIRF the same
TSO .
cen * multiprocessor
RE tL M‘ if memory
§ E%{ constraints are
2l 0 Shared memory fulfilled
oEn b““““ >
OF®
)
\
Block 0 Block 1 Block 2
Legend: RF = Register file. LM = Local Memory G . d 0
 GPU memory: (NG (OEGE) r )

~ Threads within a block can use the shared memory to perform
tasks in @ more cooperative and faster manner.

~ Global memory is the only visible to threads, blocks and kernels.

69
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Playing with mernory constraints in Kepler
to maximize the use of resources

- Limits within a multiprocessor (SMX): 64 Kregs. and 48
KB. of shared memory. That way:

- To allow a second block to execute on the same multiprocessor,
each block must use at most 32 Kregs. and 24 KB of shared memory.

~ To allow a third block to execute on the same multiprocessor,
each block must use at most 21.3 Kregs. and 16 KB. of shared mem.

' ... and so on. In general, the less memory used, the more
concurrency for blocks execution.

- There is a trade-off between memory and parallelism!
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Think srall:
1D partitioning on a 64 elements vector

Remember' Use finest grained parallelism (assign
data ach thre d)hd dblkdp oooooo ;
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NVIDIA.

Now think big:
1D partitioning on a 64 million elerns. array

‘Maximum number of threads per block:
1K on Fermi and Kepler.

'Maximum number of blocks:
64K on Fermi, 4G on Kepler.

'Larger sizes for data structures can only be covered with a
huge number of blocks (keeping fine-grained parallelism).

- Choices:
- 64K blocks of 1K threads each.
- 128K blocks of 512 threads each (only feasible in Kepler).
- 256K blocks of 256 threads each (only feasible in Kepler).
' ... and so on.
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Mernory sp

1)
)
(D

The CPU and the GPU have separated memory spaces:
To communicate them, we use the PCI express bus.

The GPU uses specific functions to allocate memory and copy data
from CPU in a similar manner to what we are used with the C
language (malloc/free).

Pointers are only addresses:

You cannot derive from a pointer value if the address belongs to
either the CPU or the GPU space.

You have to be very careful when handling pointers, as the program
usually crashes when a CPU data attemps to be accessed from GPU
and vice versa (this situation is changing in CUDA 5.0, where the
memory accessed from both processors is unified).

73
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CUDA is C with sore extra keywords.
A preliminar exarnple

/,Qoid saxpy_serial(int n, float a, float *x, float *y) h
{

for (int i = 0; 1 < n; ++1)

C code on the CPU

}
// Invoke the SAXPY function sequentially
saxpy_serial(n, 2.0, x, y);
\ J

Equivalent CUDA code for its parallel execution on GPUs:

/i_g1oba1__ void saxpy_parallel(int n, float a, float *x,

float *y)

{ // More on parallel access patterns later in example 2
int 1 = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n)

}
// Invoke SAXPY in parallel with 256 threads/block

int nblocks = (n + 255) / 256;
\\faxpy_para11e1<<<nb1ocks, 256>>>(n, 2.0, X, y); 4/

76
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List of extensions added to the C language

Type qua|lflerS' __device__ float array[N];
‘global, device, shared, local, constant. _ giopai__ void med._filter(float “image) {
Keywords __shared__ float region[M];
‘threadIdx, blockIdx, gridDim, blockDim.
. _ region[threadldx.x] = image[i];
Intrinsics:

'__syncthreads(); —-syncthreads0;
'Runtime API: | magell = result
| MemorYl SymbOIS, execution /| Allocate memory in the GPU
management. void *myimage;
cudaMalloc(&myimage, bytes);
'Kernel functions to launch code to

the GPU from the CPU_ // 100 thread blocks, 10 threads per block

convolve<<<100, 10>>> (myimage);

77
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Interaction between CPU and GPU

'CUDA extends the C language with a new type of function,
kernel, which executes code in parallel on all active threads
within GPU. Remaining code is native C executed on CPU.

'The typical main () of C combines the sequential execution
on CPU and the parallel execution on GPU of CUDA kernels.

'A kernel is launched in an asynchronous way, that is, control
always returns immediately to the CPU.

'Each GPU kernel has an implicit barrier when it ends, that is,
it does not conclude until all its threads are over.

'We can exploit the CPU-GPU biprocessor by interleaving code
with a similar workload on both.

78
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Interaction between CPU and GPU (cont.)

__global  kernelA(){---}
__global  kernelB(){---}
int main()

Execution
H—l
@)
)
C

Serial Code

Parallel Kernel
KernelA<<< nBlk, nTid >>>(args);

Serial Code

Parallel Kernel
KernelB<<< nBlIk, nTid >>>(args);

A kernel does not start until all previous kernels are over.
A stream is a new concept used for concurrent kernels.
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Modifiers for the functions and
launching executions on GPU

Modifiers for the functions executed on GPU:
__global  void MyKernel() { } // Invoked by the CPU
__device _ float MyFunc() { } // Invoked by the GPU

Modifiers for the variables within GPU:
__shared  float MySharedArray[32]; // In shared mem.

__constant___ float MyConstantArray[32];
Configuration for the execution to launch kernels:

dim2 gridDim(100,50); // 5000 thread blocks
dim3 blockDim(4,8,8); // 256 threads per blocks
MyKernel <<< gridDim,blockDim >>> (pars.); // Launch

Note: We can see an optional third parameter here to
indicate as a hint the amount of shared memory
allocated dynamically by the kernel during its
execution.

80
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Intrinsics

~dim3 gridDim; // Grid dimension: Number of blocks on each dim.

~dim3 blockDim; // Block dimension: Block size on each dim.

~uint3 blockIdx; // Index to the block within the mesh
~uint3 threadIdx; // Index to the thread in the block

~void _ syncthreads(); // Explicit synchronization

~ Programmer has to choose the block size and the number
of blocks to exploit the maximum amount of parallelism for
the code during its execution.

81
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Functions to query at runtime
the hardware resources we count on

'Each GPU available at hardware level receives an integer
tag which identifies it, starting in 0.

"To know the number of GPUs available:
cudaGetDeviceCount (int* count);

‘"To know the resources available on GPU dev (cache,
registers, clock frequency, ...):

cudaGetDeviceProperties(struct cudaDeviceProp* prop, int dev);

"To know the GPU that better meets certain requirements:

‘cudaChooseDevice(int* dev, const struct cudaDeviceProp* prop);

To select a particular GPU:
cudaSetDevice(int dev);

‘To know in which GPU we are executing the code:
cudaGetDevice(int* dev);

Manuel Ujaldon - Nvidia CUDA Fellow
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NVIDIA.

The output of cudaGetDeviceProperties

< This is exactly the output you get from the “DeviceQuery”
code in the CUDA SDK.

There are 4 devices supporting CUDA

Device 0: "GeForce GTX 480"

CUDA Driver Version: 4.0

CUDA Runtime Version: 4.0

CUDA Capability Major revision number: 2

CUDA Capability Minor revision number: 0

Total amount of global memory: 1609760768 bytes
Number of multiprocessors: 15

Number of cores: 480

Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768

Warp size: 32

Maximum number of threads per block: 1024

Maximum sizes of each dimension of a block: 1024 x 1024 x 64
Maximum sizes of each dimension of a grid: 65535 x 65535 x 65535
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes

Clock rate: 1.40 GHz
Concurrent copy and execution: Yes

Run time limit on kernels: No

Integrated: No

Support host page-locked memory mapping: Yes

Compute mode: Default (multiple host threads can use this device simultaneously)
Concurrent kernel execution: Yes

Device has ECC support enabled:

Manuel Ujaldon - Nvidia CUDA Fellow
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NVIDIA.

Let’s manage video memory

To allocate and free GPU memory:
cudaMalloc (pointer, size)

cudaFree (pointer)

To move memory areas between CPU and GPU:
On the CPU side, we declare malloc(h A).
Also on the GPU side, we declare cudaMalloc(d A).

And once this is done, we can:

Transfer data from the CPU to the GPU:
cudaMemcpy(d A, h A, numBytes, cudaMemcpyHostToDevice);

Transfer data from the GPU to the CPU:
cudaMemcpy(h A, d A, numBytes, cudaMemcpyDeviceToHost);

Prefix “h_" useful in practice as a tag for “host memory pointer”.

Prefix “d_" also useful as a tag for “device (video) memory”.
Manuel Ujaldon - Nvidia CUDA Fellow
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Exarmple 1: What your code has to do

~ Allocate N integers in CPU memory.
< Allocate N integers in GPU memory.
< Initialize GPU memory to zero.

< Copy values from GPU to CPU.

< Print values.

86
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Example 1: Solution
[C code in red, CUDA extensions in blue]

int main()

{
int N = 16;
int num bytes = N*sizeof(int);
int *d _a=0, *h a=0; // Pointers in device (GPU) and host (CPU)
h a = (int*) malloc(num bytes);
cudaMalloc( (void**)&d a, num bytes);
if( 0==h a || 0==d a ) printf("I couldn’t allocate memory\n");
cudaMemset( d a, 0, num bytes);
cudaMemcpy( h a, d a, num bytes, cudaMemcpyDeviceToHost);
for (int i=0; i<N; i++) printf("$d ", h a[i]);
free(h a);
cudaFree(d a);
}
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NVIDIA.

Asynchronous mermory transfers

cudaMemcpy () calls are synchronous, that is:
They do not start until all previous CUDA calls have finalized.

The return to the CPU does not take place until we have performed
the actual copy in memory.

From CUDA Compute Capabilities 1.2 on, it is possible to
use the cudaMemcpyAsync () variant, which introduces
the following differences:

The return to the CPU is immediate.
We can overlap computation and communication.

88
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Example 2: Increment a scalar value “b
to the N elernents of an array
The € broaram The CUDA kernel running on GPU
o P _g ) followed by host code running on CPU.
This file is compiled with gcc e : :
This file is compiled with nvcc
ol fraraa e aues: ot by, 1 1) {_global_ void increment_gpu(float *a, float b, int N)
{ int idx = blockIdx.x * blockDim.x + threadIdx.x;
for (int idx = 0; idx<N; idx++) if (idx < N)
a[idx] = a[idx] + b; ) alidx] = a[idx] + b;
¥
void main()
void main() {
{ dim3 dimBlock (blocksize);
b, N): dim3 dimGrid (ceil(N/(float)blocksize));
) increment_cpu(a, b, N); increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);
by
62 8
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NVIDIA.

Exarmple 2: Incrernent a scalar “b”
to the N elements of a vector

Say N=16 and blockDim=4. Then we have 4 thread blocks,
and each thread computes a single element of the vector.
This is what we want: fine-grained parallelism for the GPU.

%% blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

O G blockDim.x = 4 blockDim.x = 4 blockDim.x = 4 blockDim.x = 4

<)5 threadldx.x = 0,1,2,3 threadldx.x = 0,1,2,3 threadldx.x = 0,1,2,3 threadldx.x = 0,1,2,3
Ln% % idx =0,1,2,3 idx = 4,5,6,7 idx = 8,9,10,11 idx = 12,13,14,15

intidx = (blockIdx.x * blockDim.x) + threadIdx. x; Same access
It will map from local index threadIdx.x to global index [ ks il

threads
Warning: blockDim.x should be >= 32 (warp size), this is just an example
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More details for the CPU code of example 2
[red for C, green for variables, blue for CUDA]

// Reserve memory on the CPU
unsigned int numBytes = N * sizeof (float);
float* h A = (float*) malloc(numBytes) ;

// Reserve memory on the GPU
float* d A = 0; cudaMalloc((void**)&d A, numbytes);

// Copy data from CPU to GPU
cudaMemcpy (d A, h A, numBytes, cudaMemcpyHostToDevice);

// Execute CUDA kernel with a number of blocks and block size
increment gpu <<< N/blockSize, blockSize >>> (d A, b);

// Copy data back to the CPU
cudaMemcpy (h A, d A, numBytes, cudaMemcpyDeviceToHost)

// Free video memory
cudaFree(d A) ; 64 9t
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NVIDIA.

The global process

void function_in_CPuU(.. )

L CUDA The rest of

b _ kernels the C code
void other_funcs_cpPu(int ...)

{

}
void saxpy_serial(float ... )
for (int 1¢= 0; 1 < n; ++1)
) y[il = a*x[i] + y[i]; Identify ¢ i
g i ¢ emelsand | CUDA | | cu
saxpy_serial(..); rewrite them | object files Linker object files
} to exploit

GPU

93
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NVIDIA.

Cornpilation modules

A CUDA code is compiled Appiication. MRS
with the NVCC compiler.
NVCC separates CPU code
and GPU code.
The compilation is a two o
step process:

Virtual: Generates PTX

(Parallel Thread eXecution). Physical l

Physical: Generates the PTc);(otra Tﬁ;?Et
binary for a specific GPU (or .

even a CPU - more on this
Object
code

later).
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NVIDIA.

The nvee compiler and PTX virtual machine

C/C++ CUDA float4d me = gx[gtid];
Application

-
«»

me.x += me.y * me.z;

< EDG
~ Separates GPU and CPU code.

——» ~ Open64

~ Generates PTX assembler.

< Parallel Thread eXecution (PTX)

~ Virtual machine and ISA.
~ Programming model.
~ Resources and execution states.

PTX Code

ld.global.v4.£f32 {$f1,$£f3,$£f5,$£f7}, [$r9+0];
mad.f£32 $fl, $f5, $f3, $fl;
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NVIDIA.

NVCC (NVidia CUDA Cormpiler)

~NVCC is a compiler driver.
~ Invokes all compilers and tools required, like cudacc, g++, dl, ...

< NVCC produces two outputs: | compilation process in Linux:
- C code for the CPU, which must be ﬁ ﬁ
compiled with the rest of the applic. Lg
using another compilation tool.
- PTX object code for the GPU.

nvcc

Lfiil ﬁ / m / / CUDA
Complation & m
Windows: Y =Y v
‘ [rm] ] /mo/
s v [ ] L T
oo} g -
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NVIDIA.

Determining resource usage

~ Compile the kernel code with the -cubin flag to determine
register usage.
~ On-line alternative: nvec —ptxas-options=-v

<~ Open the .cubin file with a text editor and look for the
“code” section:

ar(?hitec;ture {sm_10} Per thread:
abiversion {0} e
modname {cubin} local memory

code { (used by compiler to spill

name = myGPUcode registers to device memory)

Imem =0
smem = 68 Per thread-block:
reg = 20 shared memory

bar=0
bincode { Per thread:

0xa0004205 0x04200780 0x40024c09 0x0020 registers
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NVIDIA.

Configuration for the execution: Heuristics

The number of threads must be a multiple of warp size.
To avoid wasting computation on incomplete warps.

The number of blocks must exceed the number of SMXs
(1), and, if possible, double that number (2):
(1) So that each multiprocessor can have at least a block to work with.

(2) So that there is at least an active block which guarantees occupancy
of that SMX when the block being executed suffers from a stall due to a
memory access, unavailability of resources, bank conflicts, global stalls of
all threads on a synchronization point ( syncthreads()), etc.
Resources used by a block (register file and shared

memory) must be at least half of the total available.
Otherwise, it is better to merge blocks.

98

>N Manuel Ujaldon - Nvidia CUDA Fellow




<

NVIDIA.

Heuristics (cont.)

General rules for the code to be scalable in future generations
and for the blocks stream to be processed within a pipeline:
(1) Think big for the number of blocks.
(2) Think small for the size of threads.
Tradeoff: More threads per block means better memory
latency hiding, but also means fewer registers per thread.

Hint: Use at least 64 threads per block, or even better, 128 or
256 threads (often there is still enough number of registers).

Tradeoff: Increasing occupancy does not necessarily mean
higher performance, but the low occupancy for a SMX prevents
from hide latency on memory bound kernels.

Hint: Pay attention to arithmetic intensity and parallelism.
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NVIDIA.

Pararnetrization of an application

Everything related to performance is application-
dependent, so you have to experiment for achieving optimal
results.

GPUs may also vary in many ways depending on a
particular model:
Number of multiprocessors (SMs) and cores per SM.
Memory bandwidth: From 100 GB/s to 500 GB/s.
Register file size per SM: 8K, 16K, 32K (Fermi), 64K (Kepler).
Shared memory size: 16 KB. per SM before Fermi, up to 48 KB. now.

Threads: Check the per-block and the global limits.
Per-block: 512 (G80 and GT200), 1024 (Fermi and Kepler).
Total: 768 (G80), 1024 (GT200), 1536 (Fermi), 2048 (Kepler).
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NVIDIA.

CUDA Occupancy Calculator

~To help you select parameters for your application wisely

o http://developer.download.nvidia.com/compute/cuda/CUDA Occupancy calculator.xls

B3 Microsoft Excel - CUDA_Occupancy_calculator.xls
i) Fle Edt View Insert Format Tools Data Window Help

NGRS AT E S DR S0 8 s A D @ e

Type a question for help v = @ X

R |

10 - | B I U EE

S8 % 2 %8 5%

<

NVIDIA.

MyRegCount |+ A 20
A [ T ¢ T o T & ["F [ [ W [ 7 T o T «w [ ¢t [T v [ N~ T o T P, [ e [ R [ s [ 17 [ vz
1 CU DA G PU OCCLI pancy Ca|cu |at0r lick Here for detailed instructions on how to use this occupancy calculato
[ 2 | For more information on NVIDIA CUDA, visit nvidia.
3
| 4 | Justfollow steps 1, 2, and 3 below! (or click here for help) Your chosen resource usage is indicated by the red triangle on the graphs. =
5 The other data points represent the range of possible block sizes, register counts, and shared memory allocation.
6 {Help)
; Varying Block Size Varying Register Count
a L
0 24 24
11
[12 |
|13 |(Don't edit anything below this line) 18 1 -
[14 ] .- 5%
| 15 |3.) GPU Occupancy Data is dis| here and in the graphs: % E ] 5
| 16 [Active Threads per Multiprocessor 384 g3 Block Size g3 o\ MyRegistr
| 17_|Active Warps per Multiprocessor 12 23 12 1 N 28 ” At o0
| 18 |Active Thread Blocks per Multiprocessor 2 5‘ B B
[19 of each Multip 50% 28 23
20 |Maximum Simultaneous Blocks per GPU 32 [ 6
| 21 |(Note: This assumes there are at least this many blocks)
22
| 23 |Physical Limits for GPU: G380 \
24 per GPU 16 0 13
E Threads /Warp 32 16 80 144 208 272 336 400 464 0 4 g 12 % 20 24 28 32
| 26 Warps / Multiprocessor 24 Threads Per Block Registers Per Thread
| 27 |Threads / Multiprocessor 768
| 28 |Thread Blocks / Multiprocessor 8
| 29 |Total # of 32-bit registers / Multiprocessor 8192
30 |Shared Mey / Multiprocessor 16384 Varying Shared Memory Usage
3
32 Per Thread Block 2
| 33 |Warps 6
| 34 |Registers 3840 -1
35 |Shared Memory 512 - g
| 36 | These data are used in computing the occupancy data in blue b &
|37 | g8n ‘hw-ﬁ’-“'%
38 Thread Blocks Per Multipr Blocks E 2 ey
| 39 |Limited by Max Warps f Multiprocessor 4 E ; .
| 40 |Limited by Registers / Multiprocessor 2
| 41 |Limited by Shared Memory / Multiprocessor 32
| 42 |Thread Block Limit Per Multiprocessor is the minimum of these 3 0
43 R R - - -
44 [CUDA Occupancy Caloulstor I REzigs:zze3EEEEEEE
| 45 [Version: | 14 Registers Per Thread
46 ight and License ]
W« » »}\Calculator {Help / GPU Data { Copyright & License 1< i S|

Ready

| g LE:
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NVIDIA.

To reach the maximurn degree of parallelism,
use wisely the orange table of the tool (1)

The first row is the number of threads per block:
The limit is 1024 in Fermi and Kepler generations.
Power of two values are usually the best choices.
List of potential candidates: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024.

We'll use 256 as first estimate, development cycles will tune the
optimal value here, but usually:

Small values [2, 4, 8, 16] do not fully exploit the warp size and shared memory
banks.

Intermediate values [32, 64] compromise thread cooperation and scalability in
Kepler, Maxwell and future GPUs.

Large values [512, 1024] prevent from having enough number of concurrent blocks
on each multiprocessor (the limits for the threads per block and per SMX are very
close to each other). Also, the amount of registers per thread is too small.
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o

0 reacn the maximurm degr
r

ee of parallelism,
use wisely the orange table or

the tool (2

The second row is the number of registers per thread.

We access the .cubin file to know this.

The limit for each SM is 8K (G80), 16K (GT200), 32K (Fermi), 64K
(Kepler), so when consuming 10 regs./thread is possible to execute:
On G80: 768 threads/SM, that is, 3 blocks of 256 thr [3*256*10=7680] (< 8192).
On Kepler: We reach the maximum of 2048 threads per SMX, but the use of
registers is very low (we could have used up to 29 registers per thread):
8 blocks * 256 threads/block * 10 registers/thread = 22480 regs. (< 65536 max.).
In the G8O0 case, using 11 registers/thread, it would have meant to
stay in 2 blocks, sacrificing 1/3 of parallelism => It is worth cutting
that register down working more on the CUDA code for the thread.
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O

10 reach the rmaxirmurm J~gre
use wisely the orange table o
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The third row is the shared memory spent for each block:

We will also get this from the .cubin file, though we can carry out a
manual accounting, as everything depends on where we put the
__shared  prefix during memory declarations in our program.

Limit: 16 KB (CCC 1.x), 16/48 KB (CCC 2.x), 16/32/48 KB (3.x).

In the previous case for the G80, we won't spend more than 5 KB
of shared memory per block, so that we can reach the maximum of 3
concurrent blocks on each multiprocessor:

3 blocks x 5 KB./block = 15 KB (< 16 KB.)

With more than 5.34 KB. of shared memory used for each block,
we sacrifice 33% of parallelism, the same performance hit than
previously if we were unable of cutting down to 10 registers/thread.
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NVIDIA.

Step for building the CUDA source code

1. Identify those parts with a good potential to run in
parallel exploiting SIMD data parallelism.

2. Identify all data necessary for the computations.
3. Move data to the GPU.

4. Call to the computational kernel.

5. Establish the required CPU-GPU synchronization.
6. Transfer results from GPU back to CPU.

/. Integrate the GPU results into CPU variables.
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NVIDIA.

Coordinated efforts in parallel are required

Parallelism is given by blocks and threads.

Threads within each block may require an explicit
synchronization, as only within a warp it is guaranteed its
joint evolution (SIMD). Example:

a[i] = b[i] + 7;
syncthreads () ;
x[1i] = a[i-1]; // The warp 1 read here the value of a[31],

// which should have been written by warp 0 BEFORE

Kernel borders place implicit barriers:
Kernell <<<nblocks,nthreads>>> (a,b,c);

Kernel2 <<<nblocks,nthreads>>> (a,b);
Blocks can coordinate using atomic operations:

Example: Increment a counter atomicInc();
>y  Manuel Ujaldon - Nvidia CUDA Fellow |
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NVIDIA.

The required code for the GPU kernel
and its invocation from the CPU side

// Add two vectors of size N: C[1l..N] = A[1l..N] + B[1l..N]
// Each thread calculates a single component of the output vector
__global void vecAdd(float* A, float* B, float* C) {

int tid = threadIdx.x + (blockDim.x* blockIdx.x):*

Cc[tid] = A[tid] + B[tid]; GPU code

}

int main() { // Launch N/256 blocks of 256 threads each

<L >>> ’
} vecAdd N/256, 256 (dA, d B, d C); CPU code

'The global prefix indicates that vecadd () will
execute on device (GPU) and will be called from host (CPU).

A, B and C are pointers to device memory, so we need to:

‘Allocate/free memory on GPU, using cudaMalloc()/cudaFree().
‘These pointers cannot be dereferenced in host code.

109

>N Manuel Ujaldon - Nvidia CUDA Fellow




|

NVIDIA.

CPU code to handle mermory
and gather results from the GPU

unsigned int numBytes = N * sizeof (float);
// Allocates CPU memory
float* h A = (float*) malloc(numBytes) ;
float* h B = (float*) malloc (numBytes) ;
initializes h A and h B
// Allocates GPU memory
float* d A = 0; cudaMalloc((void**)&d A, numBytes);
float* d B = 0; cudaMalloc((void**)&d B, numBytes);
float* d C = 0; cudaMalloc((void**)&d C, numBytes);
// Copy input data from CPU into GPU
cudaMemcpy (d A, h A, numBytes, cudaMemcpyHostToDevice);
cudaMemcpy (d B, h B, numBytes, cudaMemcpyHostToDevice);
CALL TO THE VecAdd KERNEL IN THE PREVIOUS SLIDE HERE...
// Copy results from GPU back to CPU
float* h C = (float*) malloc (numBytes) ;
cudaMemcpy (h C, d C, numBytes, cudaMemcpyDeviceToHost)
// Free video memory
cudaFree(d A); cudafFree(d B); cudaFree(d C);
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Running in parallel

(regardless of hardware generation)

|

NVIDIA.

vecAdd <<< 1, 1 >>>

() Executes 1 block composed
of 1 thread - no parallelism.

vecAdd <<< B, 1 >>>
() Executes B blocks

composed on 1 thread. Inter-
multiprocessor parallelism.

vecAdd <<< B, M >>>
() Executes B blocks
composed of M threads each.

Inter- and intra-multiprocessor
parallelism.

GPU

Multiprocessor N
< (scalability in 2nd gener.)

/

Multiprocessor 2

Multiprocessor 1

Shared memory

Registers Registers Registers

Core1 Core2 gxus CoreM
(scalability in 3rd|gener.)

—>
| |

Texture cache

Global memory
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NVIDIA.

Indexing arrays with blocks and threads

> With M threads per block, a unique index is given by:
>tid = threadIdx.x+ blockDim.x* blockIdx.x:

> Consider indexing an array of one element per thread
(because we are interested in fine-grained parallelism), B=4
blocks of M=8 threads each:

threadIdx.x threadIdx.x
| | | 0|1/23/4F]6|7|0|1|23]4|5/6|7

J

blockIci/x.x = 2 blockIdx.x = 3

> Which thread will compute the 22nd element of the array?
- gridDim.x is 4. blockDim.x is 8. blockIdx.x = 2. threadIdx.x = 5.
~tid =5+ (8 * 2) = 21 (we start from 0, so this is the 22nd element).
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NVIDIA.

Handling arbitrary vector sizes

~ Typical problems are not friendly multiples of blockDim.x,
so we have to prevent accessing beyond the end of arrays:

// Add two vectors of size N: C[1l..N] = A[1l..N] + B[1l..N]
__global void vecAdd(float* A, float* B, float* C, N) {
int tid = threadlIdx.x + (blockDim.x * blockIdx.xXx);
if (tid < N)
C[tid] = A[tid] + B[tid];
}

~ And now, update the kernel launch to include the
"incomplete” block of threads:

vecAdd<<< (N + M-1)/256, 256>>>(d A, d B, d C, N);
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NVIDIA.

Rationale

~ Looking at the previous example, threads add a level of
complexity without contributing with new features.
- However, unlike parallel blocks, threads can:

~ Communicate (via shared memory).

- Synchronize (for example, to preserve data dependencies).

- We need a more sophisticated example to illustrate all
this...
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NVIDIA.

1D Stencil

> Consider applying a 1D stencil to a 1D array of elements.
-~ Each output element is the sum of input elements within a radius.

> If radius is 3, then each output element is the sum of 7
input elements:

— " T

radius radius

~Again, we apply fine-grained parallelism for each thread to
process a single output element.
»Input elements are read several times:

~With radius 3, each input element is read seven times.
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NVIDIA.

Sharing data between threads. Advantages

Threads within a block can share data via shared memory.
Shared memory is user-managed: Declare with  shared  prefix.
Data is allocated per block.

Shared memory is extremely fast:

500 times faster than global memory (video memory - GDDR5). The difference is
technology: static (built with transistors) versus dynamic (capacitors).

Programmer can see it like an extension of the register file.

Shared memory is more versatile than registers:
Registers are private to each thread, shared memory is private to each block.
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Snaring data between threads. Limitations

Shared memory and registers usage limit parallelism.

If we leave room for a second block, register file and shared
memory are partitioned (even though blocks do not execute
simultaneously, context switch is immediate).

Examples for Kepler were shown before (for a max. of 64K
registers and 48 Kbytes of shared memory per multiproc.):

To allocate two blocks per multiprocessor: The block cannot use
more than 32 Kregisters and 24 Kbytes of shared memory.

To allocate three blocks per multiprocessor: The block cannot use
more than 21.3 Kregisters and 16 Kbytes of shared memory.

To allocate four blocks per multiprocessor: The block cannot use
more than 16 Kregisters and 12 Kbytes of shared memory.

.. and so on. Use the CUDA Occupancy Calculator to figure it out.
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NVIDIA.

Using Shared Memory

< Steps to cache data in shared memory:

~Read (blockDim.x + 2 * radius) input elements from global
memory to shared memory.

~ Compute blockDim.x output elements.
~ Write blockDim. x output elements to global memory.

< Each block needs a halo of radius elements at each
boundary.

\ J \ J

halo on left @ halo on right

DN S NI IS N
- /
'

blockDim.x output elements
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Stencil kernel

__global  void stencil 1d(int *d_in, int *d out)
{
~ shared  int temp[BLOCKSIZE + 2 * RADIUS];
int gindex = threadIdx.x

+ blockIdx.x * blockDim.x; T oy
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = d_in[gindex]; W
if (threadIdx.x < RADIUS) {
temp[lindex-RADIUS] = d in[gindex-RADIUS]; T T 1 10 0 I I [ IS IS I Py I 1] |
temp[lindex+blockDim.x]=d in[gindex+blockDim.x];
}
// Bpply the stencil But we have to prevent race
int result = 0; conditions. For example, last
for (int offset=-RADIUS; offset<=RADIUS; offset++) thread reads the halo before
el = EEel Llnsies - e first thread (from a different
// Store the result warp) ha; fe,FChEd It.
d_out[gindex] = result; Synchronization among
} threads is required!

120
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NVIDIA.

Threads synchronization

‘Use _ syncthreads () to synchronize all threads within
a block:
'All threads must reach the barrier before progressing.
'This can be used to prevent RAW / WAR / WAW hazards.
'In conditional code, the condition must be uniform across the block.

__global  void stencil 1d(...)
{

< Declare variables and indices >
< Read input elements into shared memory >

__syncthreads();

< Apply the stencil >
< Store the result >

}
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NVIDIA.

Surnmary of major concepts
applied during this example

'Launch N blocks with M threads per block to execute threads
in parallel. Use:

kernel <<< N, M >>> ();

> Access block index within grid and thread index within block:
"blockIdx.x and threadIdx.x;

> Calculate global indices where each thread has to work
depending on data partitioning. Use:
int index = threadIdx.x + blockIdx.x * blockDim.x;

> Declare a variable/array in shared memory. Use:
-__shared (as prefix to the data type).

> Synchronize threads to prevent data hazards. Use:

__syncthreads(); 122
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NVIDIA.

GPU code for the Reverselrray kernel
(1) using a single block

__global  void reverseArray(int *in, int *out) {
int index in = threadIdx.x;
int index out = blockDim.x — 1 — threadIdx.x;

// Reverse array contents using a single block
out[index out] = in[index in];

}

~ It is a solution too naive, which does not aspire to apply
massive parallelism. The maximum block size is 1024

threads, so that is the largest vector that this code would
accept as input.
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GPU code for the Reverselrray kernel

(2) using rultiple blocks

<

NVIDIA.

__global  void reverseArray(int *in, int *out) {

int in offset = blockIdx.x * blockDim.x;
int out offset = (gridDim.x — 1 — blockIdx.x) * blockDim.x;
threadIdx.x;
int index out = out offset + (blockDim.x — 1 — threadIdx.x);

int index in = 1in offset +

// Reverse contents in chunks of whole blocks
out[index out] = in[index in];

& |

NVIDIA.
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(D

A Mmore sopnisticated version
using snared mermory

I

Input addresses are linear and aligned = coalesced

PPV 2 3 4 5 6 7 5 o 10111213 14 15

blockQ#fstt=0 blockOffeat=4 blockOffset=8 blockOffset=12

_ ,—!%
oo 2 em

u(an)u -‘..Il"!l’ .....

Shared Memory n ﬂm

Output addresses are linear and aligned = coalesced
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NVIDIA.

GPU code for the Reverselrray kernel
(3) using rultiple blocks and shared mermmory

__global void reverseArray(int *in, int *out) {
~ shared  int temp[BLOCK SIZE];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x;

// Read input elements into shared memory
temp[lindex] = in[gindex];
syncthreads();

// Reverse local arrays within each block
temp[lindex] = temp[blockDim.x-lindex-1];
syncthreads();

// Reverse contents in chunks of whole blocks
out[threadIdx.x + ((N/blockDim.x)-blockIdx.x-1) * blockDim.x] = temp[lindex];
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NVIDIA.

Typical CPU code written in C language

L C=A*B. °
- All square matrices of size N * N.

~ Matrices are serialized into vectors to
simplify dynamic memory allocation.

void MxMonCPU (float* A, float* B, float* C, int N);
{

for (int i=0; i<N; i++)
for (int j=0; 3j<N; Jj++) A C
{

float sum=0;
for (int k=0; k<N; k++)
{

float a = A[i*N + k];

i 2

float b = B[k*N + J]/ _::::::::::::::::::::::::::::::;
sum += a*b;

}

C[i*N + j] = sum;

} N N
} 29
<3

IIIII A.

Manuel Ujaldon - Nvidia CUDA Fellow



<

NVIDIA.

CUDA version for the matrix product:
A draft for the parallel code

__global  MxMonGPU (float* A, float* B, float* C, int N);
{
float sum=0;
int 1, j;
i = threadIdx.x + blockIdx.x * blockDim.x;
j = threadIdx.y + blockIdx.y * blockDim.y;
for (int k=0; k<N; k++)
{
float a = A[i*N + k],
float b = B[k*N + j];
sum += a*b;
}
C[i*N + j] = sum;

30
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NVIDIA.

CUDA version for the matrix product:
Explaining parallelization

Each thread computes a single element of C.
Matrices A and B are loaded N times from video memory.
Blocks accomodate threads in groups of 1024 threads

(internal CUDA constraint in Fermi and Kepler). That way,
we may use 2D blocks composed of 32x32 threads each.

. WidthA WidthB
. WidthB
Grid

2o f S i i T !
................... | _ X
% % % % HeightAll ¢(x, y)
—7.

% ' .@Th(x y) % C % dim2 dimBlock (BLOCKSIZE, BLOCKSIZE) ;
""" e e s dim2 dimGrid (WidthB/BLOCKSIZE, HeightA/BLOCKSIZE) ;
é - % % - % l\./b.{l\./lonGPU <<<dimGrid,dimBlock>>> (A, B, C, N);
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CUDA version for the matrix product:
Analysis

- Each thread requires 10 registers, so we can reach the
maximum amount of parallelism in Kepler:

2 blocks of 1024 threads (32x32) on each SMX. (2x1024x10 = 20480
registers, which is lower than 65536 registers available).

- Problems:
‘Low arithmetic intensity.
‘Demanding on memory bandwidth, which becomes the bottleneck.

- Solution:
‘Use shared memory on each multiprocessor.
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Using shared mermory:
Version with tiling for A and B

- The 32x32 submatrix C,,,, computed by

each thread block uses tiles of 32x32
elements of A and B which are repeatedly
allocated on shared memory.

- A and B are loaded only (N/32) times
from global memory.

- Achievements:

‘Less demanding on
memory bandwidth.

‘More arithmetic intensity, = e

133
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NVIDIA.

Tiling: Implementation details

We have to manage all tiles involved within a thread block:

Load in parallel (all threads contribute) the input tiles (A and B) from
global memory into shared memory. Tiles reuse the shared memory space.

__syncthreads() (to make sure we have loaded matrices before
starting the computation).

Compute all products and sums for C using tiles within shared memory.
Each thread can now iterate independently on tile elements.

___syncthreads () (to make sure that the computation with the tile is
over before loading, in the same memory space within share memory, two
new tiles of A and B in the next iteration).
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NVIDIA.

A trick to avoid shared memory bank conflicts

Rationale:

The shared memory is structured into 16 (pre-Fermi) or 32 banks.
Threads within a block are numbered in column major order, that is,
the x dimension is the fastest varying.

When using the regular indexing scheme to shared
memory arrays: shData[threadIdx.x][threadIdx.y], threads
within a half-warp will be reading from the same column,
that is, from the same shared memory bank.

However, using shData[threadIdx.y][threadIdx.x],
threads within a half-warp will be reading from the same
row, which implies reading from a different bank each.

So, tiles store/access data in shared memory transposed.
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Tiling: The CUDA code for the GPU kernel

__global  void MxMonGPU (float *A, float *B, float *C, int N)
{
int sum=0, tx, ty, i, 37
tx = threadldx.x; ty = threadldx.y;
i = tx + blockIdx.x*blockDim.x; J = ty + blockIdx.y*blockDim.y;
__shared  float As[32][32], float Bs([32][32];
// Traverse tiles of A and B required to compute the block submatrix for C
for (int tile=0; tile<(N/32); tile++)
{
// Load tiles (32x32) from A and B in parallel (and store them transposed)
As[ty] [tx]= A[(i*N) + (ty+(tile*32))1];
Bs[ty] [tx]= B[ ((tx+(tile*32))*N) + J];
__syncthreads() ;
// Compute results for the submatrix of C
for (int k=0; k<32; k++) // Data have to be read from tiles transposed too
sum += As[k][tx] * Bs[ty] [k];
__syncthreads() ;
}
// Write all results for the block in parallel
C[i*N+j] = sum;

}
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A cornpiler optirnization: Loop unrolling

Without loop unrolling: Unrolling the loop:
__syncthreads() ; __syncthreads() ;

// Compute results for that tile // Compute results for that tile
for (k=0; k<32; k++) sum += As[tx][O]*Bs[O][ty];
sum += As[tx][k]*Bs[k][ty]; sum += As[tx] [1]*Bs[1l][tyl;
sum += As[tx][2]*Bs[2][ty];
___syncthreads() ; sum += As[tx] [3]*Bs[3][ty];
} sum += As[tx][4]*Bs[4][ty];
ClindexC] = sum; sum += As[tx][5]*Bs[5][ty];
sum += As[tx][6]*Bs[06] [ty];
sum += As[tx][7]*Bs[7][ty];
sum += As[tx][8]*Bs[8][ty];

sum += As[tx][31]*Bs[31][ty];
__syncthreads() ;
}

Cl[indexC] = sum;
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Performance on the GB8O0 for tiling & unrolling

100
75
G
:
%0 % W Tiling only
¢» B Tiling & Unrolling
25

4x4 8x8 12x12 16x16

Tile size (32x32 unfeasible on G80 hardware)
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Basic web resource for a CUDA programrner

EXPLORE CUDA ZONE

WHAT IS CUDA

Learn more about the CUDA
parallel computing platform and
programming model.

CUDA IN ACTION -
RESEARCH & APPS

Supercomputing is now
accessible for every researcher
and scientist.

Find latest research, applications
and links to how CUDA is transforming the industry

CUDA EDUCATION &
TRAINING

Get educated with online
courses, webinars, University
Courses and wealth of technical
papers & documentation

r
GET STARTED -
PARALLEL COMPUTING

Find out about different
paths and options for
deploying CUDA and GPU
Computing in your project

- Languages (C/C++, Python)?
- Libraries (cuBLAS, cuFFT).

- Directives (OpenACCQC).

- Templates (thrust).

( CUDA TOOLKIT

The NVIDIA CUDA Toolkit
provides a comprehensive
development environment
for C and C++ developers
building GPU-accelerated
applications.

- Compiler (NVCC). A
- Debugger (GDB).

- Profiler (cudaprof and Visual).
- Development envir. (Nsight).
- Code examples.

development aids available

kfrom NVIDIA & partners.

J
(" cubA TOOLS & - Eclipse. h
ECOSYSTEM _ Matlab
Learn more about powerful -
CUDA tools, libraries, - CUDA Fortran.
languages, and other - GPU Direct.

- SDK for the LLVM compiler.

[developer.nvidia.com/cuda-zone]
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CUDA 6 Production Release.
Free download for all platforms and users

< [developer.nvidia.com/cuda-downloads]
)

( Li Mac 0SX (Windows @ Mac 05X )
inux ac 0S
Distribution xB& &4-bit x84 32-bit ARMvT
Version 64-bit 32-bit | | redora 19 RPM  RUN
Windows 8.1 Notebook EXE EXE | | OpensusE 123 RPM - RUW
Windows 7 RHEL 6 RPM  RUN
Windows Vista Desktop EXE EXE | [ CemoOSé
RHEL S .
Windows XP Desktop EXE EXE Cent0S 5
Getting Started Guide SLES 11 |SP2 & SP3| RPM RUN
\ /| Ubuntu 13.04 DEB RUN RUN DEB

( )

i ) Ubuntu 12.04 DEB" RUN DEB RUN
Windows Linux @
LINK LINK

L&T, Linux for Tegra

Getting Started Guide

0SX Release Package . J
10.8

PKG
10.9

Getting Started Guide
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GPU Gems series [developer.vidia.com/content/GPUGems3/gpugems3_part01.htmi]
List of CUDA books in [www.nvidia.com/object/cuda_books.htmi]

= T ‘ /

COMPUTING GEMS
Jade Edition

A ' "
POGEMS Bl . == CUDA GPU GPU

COMPUTING GEMS
BY EXAMPL ( Emerald Eaition

%  WEN-MEI W. HWU
editor-in-chief

Programming Massively
Parallel Processors

3
)

Gregory f g
Nagsimiiano Fe \%

o v
.k CUDA Fortran for ]
¢ Scientists and Engineers

o
-4 _—
Professional

CUDA C

Program

ROB FARBER

CUDA

PPLICATION DESIGN

MK VK SHANE COOK

et | AVIDIA

Nov'll Dic'12
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Guides for developers and more docurnents

Getting started with CUDA C: Programmers guide.
[docs.nvidia.com/cuda/cuda-c-programming-guide]

For tough programmers: The best practices guide.
[docs.nvidia.com/cuda/cuda-c-best-practices-guide]

The root web collecting all CUDA-related documents:
[docs.nvidia.com/cuda]

where we can find, additional guides for:
Installing CUDA on Linux, MacOS and Windows.
Optimize and improve CUDA programs on Kepler platforms.
Check the CUDA API syntax (runtime, driver and math).
Learn to use libraries like cuBLAS, cuFFT, cuRAND, cuSPARSE, ...
Deal with basic tools (compiler, debugger, profiler).
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Choices to accelerate your applications on
GPUs and material for teaching CUDA
< [developer.nvidia.com/cuda-education-training] (also
CUDA Education & Training QuIcKLINKS
Downloads
CUDA GPUs
Accelerate Your Applications NVIDIA Nsight Visual Studio Edition
Learn using step-by-step instructions, video tutorials and code samples. Get Started - Parallel Computing
o Accelerated Computing with C/C++
o Accelerate Applications on GPUs with OpenACC Directives Tools & Ecosystem
e Accelerated Numerical Analysis Tools with GPUs
e Drop-in Acceleration on GPUs with Libraries CUDAFAQ
e GPU Accelerated Computing with Python
Tweets by @GPUComputing W Follow
Teaching Resources
Get the latest educational slides, hands-on exercises and access to GPUs for your
parallel programming courses.
o Parallel Programming Training Materials
o NVIDIA Research & Academic Programs
Sign up to join the Accelerated Computing Educators Network. This network seeks to
provide a collaborative area for those looking to educate others on massively parallel
programming. Receive updates on new educational material, access to CUDA Cloud
Training Platforms, special events for educators, and an educators focused news letter.
Sign-up Today!
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Courses on-line (free access)

More than 50.000 registered users from 127 countries over
the last 6 months. An opportunity to learn from CUDA masters:
Prof. Wen-Mei Hwu (Univ. of Illinois).
Prof. John Owens (Univ. of California at Davis).
Dr. David Luebke (Nvidia Research).

There are two basic options, both recommended:

Introduction to parallel programming: U

7 units of 3 hours = 21 hours. UDACITY

Provides high-end GPUs to carry out the proposed assignments.
ity-cs344-intro-parallel-programming]

[https://developer.nvidia.com/udac

Heterogeneous Parallel Programming: eoursera
9 weeks, each with classes (20’ video), quizzes and programming assignments.

[https://www.coursera.org/course/hetero]
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Tutorials about C/C++, Fortran and Python

on the Web (cloud computing): [nvidia.qwiklab.com]
They are usually sessions of 90 minutes.

You have to register on the Amazon EC2 services available

Only a Web browser and SSH client are required.
Some tutorials are free, other require tokens of $29.99.

Create New Account

Signin

<

NVIDIA.

v C/C++ Labs @ First time? >

* Get started by creating a
new account or Sign In.

v Fortran Labs ® « Find labs by brvwsging Lab
Topics, clicking on Popular
Tags, or using Search.
Read more about a lab by
clicking on its image.
Price is indicated in Tokens.
Some labs are Free. One
token is $29.99USD.
Duration is estimated time
to complete the lab.
Access is total time
allocated to take the lab.
Questions? Contact
support@gwiklabs.com.

~ Python Labs @

This class contains all labs related to the Python programming language.

Accelerating Applications with

Accelerating Applications with

CUDA Python GPU-Accelerated Libraries in

Python
Price:1 Token Price:1 Token POPUIar tags
Duration: 01h30 m Access: 02h00 m Duration: O1h:30 m Access: 02h00 m
Tags: self-paced, Python, CUDA Tags: CUDA, Libraries, Python, self-paced self paced Python
Levels: Beginner Levels: Beginner CUDA Libraries Fortran
Unrated & Unrated a3

OpenACC C C++Optimization

& CUDA Cloud Training &3 CUDA Cloud Training
ioia v

This class contains all labs related to the C and C++ programming languages.

SANVIDIA.

CUDA

GPU Memory Optimizations

Price:1 Token
Duration: 01h:30 m

Tags: Optimization. Access: 02 h:00 m
Levels:
Unrated &1

<3 CUDA Cloud Training
nvioia

OpenACC

Directives for Accelerators

OpenACC - 2Xin 4 Steps in C/C++

Price:1 Token
Duration: 01h:30 m

Tags: OpenACC.  Access: 02h:00 m
Levels: Beginner
Unrated &0

<4 CUDA Cloud Training
nvibia.

Accelerating Applications with
CUDA C/C++

Price:1Token
Duration: 01h:30 m

Tags: self-paced. C. Access: 02 h:00 m
Levels: Beginner
Unrated &1

&3 CUDA Cloud Training
DA,

SANVIDIA.

CUDA

Accelerating Applications with GPU-
Accelerated Libraries in C/C++

Price:1Token

Duration: 01h:30 m

Tags: CUDA. C. C++. Access: 02 h:00 m
Levels: Becinner

Unrated &0

<1 CUDA Cloud Training
o,
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Talks and webinars

'Talks recorded at GTC (Graphics Technology Conference):
383 talks from 2013.
'More than 500 available from 2014.

' [www.gputechconf.com/gtcnew/on-demand-gtc.php]

'Webinars about GPU computing:
List of past talks on video (mp4/wmv) and slides (PDF).
‘List of incoming on-line talks to be enrolled.

'[developer.nvidia.com/gpu-computing-webinars]
'CUDACasts:
' [bit.ly/cudacasts]
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EX | f webi bout CUDA 6.0
arnples or weninars abou .

GTC Express Webinar Program
GTC Express is a year-round extension of the great content available at Register below for upcoming webinars and explore recordings of previous
GTC. Each month, top developers, scientists, researchers, and industry webinars.
practitioners present innovative and thought-provoking webinars focused
on the GPU-enabled work they're doing and sharing how GPUs are
transforming their fields.
GTC EXPRESS SCHEDULE AT-A-GLANCE
. Date  Tte  Speaker

;US(?:MZIPS;’ The Next Steps for Folding@home Vijay Pande, Professor, Stanford University e

May 14, 2014, CUDA 6: Performance Overview Jonathan Cohen, Senior Manager, CUDA . .

10:00 AM PDT Libraries and Algorithms, NVIDIA Register Now

May 13, 2014, An Overview of AMBER 14 - Creating the  Ross C. Walker, University of California San

9:00 AM PDT World's Fastest Molecular Dynamics Diego, Scott Le Grand, Amazon Web . .

Software Package Services, and Adrian Roitberg, University of Register Now
Florida.

May 7, 2014, CUDA 6: Drop-in Performance NVIDIA DevTech Team N .

10:00 AM PDT Optimized Libraries > Register Now

qﬂg)&; ’A%I(\):;It)’T CUDA 6: Unified Memory Mark Ebersole, CUDA Educator, NVIDIA SR

ﬂ)r(l)lo Zzil\zlgl; _;_1, CUDA 6 Features Overview Ujval Kapasi, CUDA Product Manager, NVIDIA eIty
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Developers

- Sign up as a registered developer:
- [www.nvidia.com/paralleldeveloper]
- Access to exclusive developer downloads.
- Exclusive access to pre-release CUDA installers like CUDA 6.0.
- Exclusive activities an special offers.

' Meeting point with many other developers:
- [www.gpucomputing.net

- GPU news and events:
- [www.gpgpu.org]
‘Technical questions on-line:

'NVIDIA Developer Forums: [devtalk.nvidia.com]

‘Search or ask on: [stackoverflow.com/tags/cuda] 149
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Developers (2)

< List of CUDA-enabled GPUs:

~ [developer.nvidia.com/cuda-gpus

<~ And a a last tool for tuning code: The CUDA Occupancy
Calculator

~ [developer.download.nvidia.com/compute/cuda/
CUDA_Occupancy_calculator.xls]
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Future developrnents

Nvidia’s blog contains articles unveiling future technology
to be used within CUDA. It is the most reliable source about
what’s next (subscription recommended):

[devblogs.nvidia.com/parallelforall]

Some recommended articles:
"5 Powerful New Features in CUDA 6", by Mark Harris.
“CUDA 6.0 Unified Memory”, by Mark Ebersole.
“CUDA Dynamic Parallelism API and Principles”, by Andrew Adinetz.

“NVLINK, Pascal and Stacked Memory: Feeding the Appetite for Big
Data”, by Denis Foley.

“CUDA Pro Tip: Increase Application Performance with NVIDIA GPU
Boost”, by Mark Harris.
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Thanks for your attention!

You can always reach me in Spain
at the Computer Architecture Department
of the University of Malaga:

e-mail: ujaldon@uma.es
Phone: +34 952 13 28 24.

Web page: http://manuel.ujaldon.es
(english/spanish versions available).

Or, more specifically on GPUs,
visit my web page as Nvidia CUDA Fellow:
http://research.nvidia.com/users/manuel-ujaldon
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