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Motivation: Why GPU?

@ Kepler Series GPUs vs. Quad-core Sandy Bridge CPUs
Q@ Kepler delivers equivalent performance at:

« 1/18t the power consumption
« 1/9" the cost

@ So
@ Awesome performance per Watt
@ Awesome performance per $

@ Price/Performance/Power:
@ NVIDIA GeForce GTX 680 3,090 GFLOPS at 195 W for $460
Q 3,090 GFLOPS /195 W = 15.8 GFLOPS/W
@ 3,090 GFLOPS / $460 = 6.7 GFLOPS/$

@ “The Soul of a Supercomputer in the Body of a GPU”

- Which costs more: buying a Playstation or running it
, 3 sieeivaie: COMPUTING ConthOUSly for a year?




Performance Graph
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Is a speedup of 1400x for a GPU
implementation plausible?




The Effect of Memory Bandwidth

@ Theoretical Peak FLOPS

Q@ An unrealistic measure obtained by multiplying the ALU
throughput by number of cores

@ A good measure would also account for I/O performance,
cache coherence, memory hierarchy, integer ops
@ GPUs win again on memory transfer
@ On average 7X higher internal memory bandwidth
Q 177.4 GB/s (GTX4xx,5xx) vs 25.6 GB/s (Intel Core i7)
@ However CPU - GPU transfer much slower (~8 GB/s)




Case Study: Molecular Docking

@ 1400-fold speed-ups are possible for the
right problem and with sufficient
development effort

@ Coarse-grained replica exchange Monte
Carlo protein docking

Q A statistical sampling approach to aligning X 240 l
molecules _y

@ Viral capsid construction:
@ 680,000 residues, 100 million iterations

@ 3000 years on a single CPU
Q@ < 1 year on a cluster of GPUs




A Difference in Design
Philosophies

CPU GPU

ALU ALU

Control

ALU ALU




Design Implications

@ CPU:
@ Optimized for sequential code performance
@ Lower memory bandwidths (< 50 GB/s)
Q@ Large cache and control

@ GPU:
Q@ Optimized for parallel numeric computing
Q@ Higher memory bandwidths (> 150 GB/s)
@ Small cache and control

@ |deal is a combination of CPU and GPU, as
) prowded by CUDA




Motivation: Why CUDA?

@ What is it?
@ Compute Unified Data Architecture (CUDA)

Q@ Offers control over both CPU and GPU from within a single
program

@ Written in C with a small set of NVIDIA extensions

@ Better than the GLSL/HLSL/Cg alternative:

Q@ Forcing a square peg into a round hole (forcing a Computer
Graphics program to be general purpose)

@ More features:

Q@ Shared memory, scattered reads, fully supported integer and
bitwise ops, double precision if needed




Motivation: Why not GPU?

@ GPU’s are not a cure-all

@ Not suited to all algorithms

Q@ Work needs to be divisible into small largely-
independent fragments

Q@ Does not cope well with recursive highly-branching
tightly-dependent algorithms

@ Difficult to program

Q@ Relatively easy to get moderate speedups (2-5X)

Q Better performance requires understanding of the
architecture and careful tuning




Feeding the Beast

@ Need thousands of threads to:
Q@ Saturate processors
Q@ Hide data transfer latency

@ Handle other forms of
synchronisation

@ Supported by low thread ' +
scheduling overhead

@ But not all problems are
amenable to such a




Memory Bandwidth

Computation per SM/SMX: ~24,000 GB/s

Register Memory: 8,000 GB/s _

Shared Memory: ~1,600 GB/s

Global Memory: 177 GB/s

CPU to GPU: ~6 GB/s

Effective memory use is absolutely crucial to GPU acceleration

3 serormance COMPUTING



Motivation: Why not CUDA?

@ Proprietary product
Q@ Only supported on NVIDIA GPUs

@ Stripped down version of C:
@ No recursion (< cc2.0), no function pointers
@ Branching may damage performance

@ Double precision deviates in small ways
from IEEE 754 standard




CUDA Compared

I T

Shader Languages » Contorted code (fora  * Supported on more
(GLSL, Compute) non-graphics fit) GPUs

* More passes required

* Restricted access to

features

* Harder to learn

OpenCL » Still underdeveloped  Cross-platform
« Somewhat verbose standard
 Similar in design to
CUDA
ATl Stream * Late to the party

* Also proprietary
« DEAD?
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Implications of Computer Graphics
Legacy

@ Games Industry:

Q@ Constant drive for performance
Improvement

@ Commoditisation — high demand
leads to high volumes, lower prices
@ Massively multi-threaded:

Q@ Millions of incoming polygons and
outgoing pixels, each largely
Independent

Q@ Best supported by millions of
... _lightweight threads




Computation Implications

@ Coherence:

Q@ Nearby pixels / vertices have similar access patterns
and computation

Q@ Consequently, GPU’s expect memory access and
branch coherence

@ Single-precision floating point:

Q@ Geometric operations in CG require floating point but
don’t need the accuracy of double precision

@ Consequently, integers and doubles weren't well
supported until recently




Memory Implications

@ Memory Bandwidth:

@ Must transfer millions of elements from vertex
buffers and to the framebuffer or the frame
rate stalls

@ Consequently, memory transfers have high
bandwidth

@ Textures:

Q@ |Images that are wrapped onto geometry to
cheaply provide additional realism

@ Consequently, GPU’s support large on-chip
memories with high bandwidth coherent
access

R c:5:65ic: COMPUTING
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CUDA Programming Model

@ Data parallel, compute intensive functions should be off-
loaded to the device

@ Functions that are executed many times, but
independently on different data, are prime candidates

Q i.e. body of for-loops

@ CUDA API:

@ Minimal C extensions

@ A host (CPU) component to control and access GPU(s)

Q@ A device component

@ CUDA source files must be compiled with the nvcc compiler




Summary

@ With current barriers to higher clock speeds, Parallel
Computing is recognised as the only viable way to
significantly accelerate applications

@ Many-core GPU architectures are a strong alternative to
multi-core (dual-core, quad-core, etc) CPU architectures

@ Programming in CUDA can provide considerable
speedup for numerically intensive applications

Q@ But more significant speedups often require extensive tuning and
algorithm restructuring

Take-home Messages
[1] Not all problems are suited to a GPU solution
[2] Refactoring and careful tuning required for best performance
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